\(\dfrac{x+1}{99}+\dfrac{x+2}{98}=\dfrac{x+3}{97}-1\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2017

\(\dfrac{x+1}{99}+\dfrac{x+2}{98}+\dfrac{x+3}{97}+\dfrac{x+4}{96}=-4\)

\(\Leftrightarrow\dfrac{x+1}{99}+1+\dfrac{x+2}{98}+1+\dfrac{x+3}{97}+1+\dfrac{x+4}{96}+1=0\)

\(\dfrac{x+100}{99}+\dfrac{x+100}{98}+\dfrac{x+100}{97}+\dfrac{x+100}{96}=0\)

\(\Rightarrow x+100=0\Leftrightarrow x=-100\) vậy \(x=-100\)

\(=\left(1-\dfrac{1}{99}-1-\dfrac{1}{97}+\dfrac{1}{97}-\dfrac{1}{98}\right)\cdot\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}\right)\)

\(=\left(-\dfrac{1}{99}-\dfrac{1}{98}\right)\cdot\dfrac{3}{10}=\dfrac{-197\cdot3}{9702\cdot10}=\dfrac{-197}{32340}\)

15 tháng 8 2017

\(\dfrac{1-x}{2017}+\dfrac{2-x}{2016}=\dfrac{3-x}{2015}+\dfrac{4-x}{2014}\)

\(\Leftrightarrow\left(\dfrac{1-x}{2017}+1\right)+\left(\dfrac{2-x}{2016}+1\right)=\left(\dfrac{3-x}{2015}+1\right)+\left(\dfrac{4-x}{2014}+1\right)\)

\(\Leftrightarrow\dfrac{2018-x}{2017}+\dfrac{2018-x}{2016}=\dfrac{2018-x}{2015}+\dfrac{2018-x}{2014}\)

\(\Leftrightarrow\dfrac{2018-x}{2017}+\dfrac{2018-x}{2016}-\dfrac{2018-x}{2015}-\dfrac{2018-x}{2014}=0\)

\(\Leftrightarrow\left(2018-x\right)\left(\dfrac{1}{2017}+\dfrac{1}{2016}-\dfrac{1}{2015}-\dfrac{1}{2014}\right)=0\)

\(\dfrac{1}{2017}+\dfrac{1}{2016}-\dfrac{1}{2015}-\dfrac{1}{2014}\ne0\)

\(\Leftrightarrow2018-x=0\Leftrightarrow x=2018\)

Vậy ....

24 tháng 7 2017

\(x:\dfrac{1}{2}+x:\dfrac{1}{4}+x:\dfrac{1}{8}+...+x:\dfrac{1}{512}=511\\ 2x+4x+8x+..+512x=511\\ x\left(2+4+8+...+512\right)=511\\ x\left(2^1+2^2+2^3+...+2^9\right)=511\\ \)

Gọi \(S=2^1+2^2+2^3+...+2^9\)

\(2S=2^2+2^3+2^4+...+2^{10}\\ 2S-S=\left(2^2+2^3+2^4+...+2^{10}\right)-\left(2^1+2^2+2^3+...+2^9\right)\\ S=2^{10}-2\)

\(x\left(2^{10}-2\right)=511\\ 2x\left(2^9-1\right)=511\\ 2x\left(512-1\right)=511\\ 2x\cdot511=511\\ 2x=1\\ x=\dfrac{1}{2}\)

Vậy \(x=\dfrac{1}{2}\)

22 tháng 3 2017

hình như sai đề bài thì phải?

26 tháng 10 2017

\(\left(\dfrac{98}{99}+\dfrac{89}{100}+\dfrac{100}{101}\right)\left(\dfrac{1}{12}-\dfrac{1}{3}+\dfrac{1}{4}\right)\\ =\left(\dfrac{98}{99}+\dfrac{89}{100}+\dfrac{100}{101}\right)\left(-\dfrac{1}{4}+\dfrac{1}{4}\right)\\ =\left(\dfrac{98}{99}+\dfrac{89}{100}+\dfrac{100}{101}\right).0\\ =0\)

8 tháng 8 2017

\(x+\left|\dfrac{1}{2}-\dfrac{1}{3}\right|=\left|\dfrac{-2}{3}-\dfrac{1}{4}\right|\)

\(x+\left|\dfrac{1}{6}\right|=\left|\dfrac{-11}{12}\right|\)

\(x+\dfrac{1}{6}=\dfrac{11}{12}\)

\(x=\dfrac{11}{12}-\dfrac{1}{6}\)

\(x=\dfrac{3}{4}\)

Vậy ...

4 tháng 4 2017

Đặt : \(B=\dfrac{99}{1}+\dfrac{98}{2}+\dfrac{97}{3}+...+\dfrac{1}{99}\)

\(B=\left(\dfrac{99}{1}+1\right)+\left(\dfrac{98}{2}+1\right)+...+\left(\dfrac{1}{99}+1\right)-99\)

\(B=\dfrac{100}{1}+\dfrac{100}{2}+\dfrac{100}{3}+...+\dfrac{100}{99}-99\)

\(B=\dfrac{100}{2}+\dfrac{100}{3}+...+\dfrac{100}{99}+\left(100-99\right)\)

\(B=\dfrac{100}{2}+\dfrac{100}{3}+...+\dfrac{100}{99}+\dfrac{100}{100}\)

\(B=100\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}\right)\)

Ta có : \(A=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}}{100\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}\right)}=\dfrac{1}{100}\)

b: \(\Leftrightarrow x-10\left(\dfrac{2}{11\cdot13}+\dfrac{2}{13\cdot15}+...+\dfrac{2}{53\cdot55}\right)=\dfrac{3}{11}\)

\(\Leftrightarrow x-10\left(\dfrac{1}{11}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{15}+...+\dfrac{1}{53}-\dfrac{1}{55}\right)=\dfrac{3}{11}\)

\(\Leftrightarrow x-10\cdot\dfrac{4}{55}=\dfrac{3}{11}\)

=>x=3/11+20/55=3/11+4/11=7/11

c: \(\Leftrightarrow\left(\dfrac{x-1}{99}-1\right)+\left(\dfrac{x-2}{98}-1\right)+\left(\dfrac{x-5}{95}-1\right)=\dfrac{1}{99}+\dfrac{1}{98}+\dfrac{1}{95}\)

\(\Leftrightarrow x-100=1\)

hay x=101