\(\text{|}\text{|}\dfrac{1}{2}.x-\dfrac{1}{4}\text{|}-3\text{|}=4\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\Leftrightarrow\left[{}\begin{matrix}\left|\dfrac{1}{2}x-\dfrac{1}{4}\right|-3=-4\\\left|\dfrac{1}{2}x-\dfrac{1}{4}\right|-3=4\end{matrix}\right.\Leftrightarrow\left|\dfrac{1}{2}x-\dfrac{1}{4}\right|=7\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}x-\dfrac{1}{4}=7\\\dfrac{1}{2}x-\dfrac{1}{4}=-7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}x=\dfrac{29}{4}\\\dfrac{1}{2}x=-\dfrac{27}{4}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{29}{2}\\x=-\dfrac{27}{2}\end{matrix}\right.\)

26 tháng 9 2017

\(\left|x+\dfrac{1}{2}\right|+\left|x+\dfrac{1}{3}\right|+\left|x+\dfrac{1}{4}\right|=4x\)

\(\left\{{}\begin{matrix}\left|x+\dfrac{1}{2}\right|\ge0\\\left|x+\dfrac{1}{3}\right|\ge0\\\left|x+\dfrac{1}{4}\right|\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left|x+\dfrac{1}{2}\right|+\left|x+\dfrac{1}{3}\right|+\left|x+\dfrac{1}{4}\right|\ge0\)

\(\Leftrightarrow4x\ge0\)

\(\Leftrightarrow x+\dfrac{1}{2}+x+\dfrac{1}{3}+x+\dfrac{1}{4}=4x\)

\(\Leftrightarrow3x+1=4x\)

\(\Leftrightarrow x=1\left(tm\right)\)

Vậy ..

26 tháng 9 2017

\(\dfrac{1}{2}\)| \(\dfrac{1}{3}x\)- \(\dfrac{1}{4}\)| - \(\dfrac{1}{5}\)= \(\dfrac{1}{6}\)

=> \(\dfrac{1}{2}\)| \(\dfrac{1}{3}x\) - \(\dfrac{1}{4}\)| = \(\dfrac{11}{30}\)

=> | \(\dfrac{1}{3}x\)- \(\dfrac{1}{4}\)| = \(\dfrac{11}{15}\)

=> \(\left[{}\begin{matrix}\dfrac{1}{3}x-\dfrac{1}{4}=\dfrac{11}{15}\\\dfrac{1}{3}x-\dfrac{1}{4}=\dfrac{-11}{15}\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}\dfrac{1}{3}x=\dfrac{59}{60}\\\dfrac{1}{3}x=\dfrac{-29}{60}\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=\dfrac{59}{20}\\x=\dfrac{-29}{20}\end{matrix}\right.\)

Chúc bạn học tốt !

26 tháng 9 2017

Tích mình , mình làm nhé! hihahehe

18 tháng 10 2017

\(\left|x+\dfrac{1}{3}\right|+\left|x+\dfrac{1}{5}\right|+\left|x+\dfrac{1}{15}\right|=4x\)

\(\left\{{}\begin{matrix}\left|x+\dfrac{1}{3}\right|\ge0\\\left|x+\dfrac{1}{5}\right|\ge0\\\left|x+\dfrac{1}{15}\right|\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left|x+\dfrac{1}{3}\right|+\left|x+\dfrac{1}{5}\right|+\left|x+\dfrac{1}{15}\right|\ge0\)

\(\Leftrightarrow4x\ge0\)

\(\Leftrightarrow x+\dfrac{1}{3}+x+\dfrac{1}{5}+x+\dfrac{1}{15}=4x\)

\(\Leftrightarrow3x+1=4x\)

\(\Leftrightarrow x=1\)

Vậy ..

25 tháng 12 2017

\(\dfrac{x-1}{2016}+\dfrac{x-2}{2015}+\dfrac{x-3}{2014}=3\)

\(\Rightarrow\left(\dfrac{x-1}{2016}-1\right)+\left(\dfrac{x-2}{2015}-1\right)+\left(\dfrac{x-3}{2014}-1\right)=0\)

\(\Rightarrow\dfrac{x-2017}{2016}+\dfrac{x-2017}{2015}+\dfrac{x-2017}{2014}=0\)

\(\Rightarrow\left(x-2017\right)\left(\dfrac{1}{2016}+\dfrac{1}{2015}+\dfrac{1}{2014}\right)=0\)

\(\dfrac{1}{2016}+\dfrac{1}{2015}+\dfrac{1}{2014}\ne0\) nên \(x-2017=0\Leftrightarrow x=2017\)

25 tháng 12 2017

cảm ơn nhiều

6 tháng 8 2018

\(\dfrac{3x-2y}{4}=\dfrac{2z-4x}{3}=\dfrac{4y-3z}{2}\)

\(\Leftrightarrow\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}\)

Theo tính chất của dãy tỉ số bằng nhau, có:

\(\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}=\dfrac{12x-8x+6z-12x+8y-6z}{16+9+4}=\dfrac{0}{29}=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}12x=8y\\6z=12x\\8y=6z\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{8}=\dfrac{y}{12}\\\dfrac{x}{6}=\dfrac{z}{12}\\\dfrac{y}{6}=\dfrac{z}{8}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{y}{3}\\\dfrac{x}{2}=\dfrac{z}{4}\\\dfrac{y}{3}=\dfrac{z}{4}\end{matrix}\right.\)

\(\Leftrightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\left(đpcm\right)\)

Kết luận ...

6 tháng 9 2017

\(\left|x+\dfrac{1}{2}\right|+\left|x+\dfrac{1}{3}\right|+\left|x+\dfrac{1}{6}\right|=4x\)

Ta có:

\(\left\{{}\begin{matrix}\left|x+\dfrac{1}{2}\right|\ge0\\\left|x+\dfrac{1}{3}\right|\ge0\\\left|x+\dfrac{1}{6}\right|\ge0\end{matrix}\right.\) \(\Rightarrow\left|x+\dfrac{1}{2}\right|+\left|x+\dfrac{1}{3}\right|+\left|x+\dfrac{1}{6}\right|\ge0\)

\(\Rightarrow4x\ge0\)

\(\Rightarrow x+\dfrac{1}{2}+x+\dfrac{1}{3}+x+\dfrac{1}{6}=4x\)

\(\Rightarrow3x+1=4x\)

\(\Rightarrow x=1\)

6 tháng 9 2017

Với mọi giá trị của \(x\in R\) ta có:

\(\left|x+\dfrac{1}{2}\right|+\left|x+\dfrac{1}{3}\right|+\left|x+\dfrac{1}{6}\right|\ge0\)

\(\Rightarrow4x\ge0\Rightarrow x\ge0\)

\(\Rightarrow\left\{{}\begin{matrix}x+\dfrac{1}{2}>0\\x+\dfrac{1}{3}>0\\x+\dfrac{1}{6}>0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left|x+\dfrac{1}{2}\right|=x+\dfrac{1}{2}\\\left|x+\dfrac{1}{3}\right|=x+\dfrac{1}{3}\\\left|x+\dfrac{1}{6}\right|=x+\dfrac{1}{6}\end{matrix}\right.\)

Thay vào ta được:

\(x+\dfrac{1}{2}+x+\dfrac{1}{3}+x+\dfrac{1}{6}=4x\)

\(\Rightarrow x=\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{6}=1\)

Vậy...................

Chúc bạn học tốt!!!

18 tháng 10 2017

Giải:

\(\left|\left|0,4x-25\%\right|-4\right|=3\)

\(\left|\left|\dfrac{2}{5}x-\dfrac{1}{4}\right|-4\right|=3\)

\(\Leftrightarrow\left[{}\begin{matrix}\left|\dfrac{2}{5}x-\dfrac{1}{4}\right|-4=3\\\left|\dfrac{2}{5}x-\dfrac{1}{4}\right|-4=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left|\dfrac{2}{5}x-\dfrac{1}{4}\right|=7\\\left|\dfrac{2}{5}x-\dfrac{1}{4}\right|=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}\dfrac{2}{5}x-\dfrac{1}{4}=7\\\dfrac{2}{5}x-\dfrac{1}{4}=-7\end{matrix}\right.\\\left[{}\begin{matrix}\dfrac{2}{5}x-\dfrac{1}{4}=1\\\dfrac{2}{5}x-\dfrac{1}{4}=-1\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}\dfrac{2}{5}x=\dfrac{29}{4}\\\dfrac{2}{5}x=-\dfrac{27}{4}\end{matrix}\right.\\\left[{}\begin{matrix}\dfrac{2}{5}x=\dfrac{5}{4}\\\dfrac{2}{5}x=-\dfrac{3}{4}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x=\dfrac{145}{8}\\x=-\dfrac{135}{8}\end{matrix}\right.\\\left[{}\begin{matrix}x=\dfrac{25}{8}\\x=-\dfrac{15}{8}\end{matrix}\right.\end{matrix}\right.\)

Vậy ...

Chúc bạn học tốt!

20 tháng 7 2017

3a)Vì A là số nguyên

=>\(3n+9⋮n-4=>3n-12+21⋮n-4=>3.\left(n-4\right)+21⋮n-4\)

\(\text{3 . (n - 4)}⋮n-4\)

=>\(21⋮n-4=>n-4\inƯ\left(21\right)=\left\{-21;-7;-3;-1;1;3;7;21\right\}\)

(Vì n là số nguyên => n - 4 là 1 số nguyên)

=>\(n\in\left\{-17;-3;1;3;5;9;11;25\right\}\)

Ta có bảng sau:

n -17 -3 1 3 5 9 11 25
3n + 9 -42 0 12 18 24 36 42 84
n - 4 -21 -7 -3 -1 1 3 7 21
\(A=\dfrac{3n+9}{n-4}\) 2 0 -4 -18 24 12 6 4

Vậy.....

b)Vì B là số nguyên

=>\(2n-1⋮n+5=>2n+10-11⋮n+5=>2\left(n+5\right)-11⋮n+5\)

\(\text{2 ( n + 5)}⋮n+5\)

=>\(11⋮n+5=>n+5\in\left\{-11;-1;1;11\right\}\)

(Vì n là số nguyên=> n + 5 là số nguyên)

=> \(n\in\left\{-16;-6;-4;6\right\}\)

Ta có bảng sau:

n -16 -6 -4 6
2 n - 1 -33 -13 -9 11
n + 5 -11 -1 1 11
\(B=\dfrac{2n-1}{n+5}\) 3 13 -9

1

Vậy.......

20 tháng 7 2017

Bài 6 cậu chép đúng đề bài chứ??