Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(=x+4+\frac{25}{x+4}-4\). x>-4 => x+4>0. => 25/x+4 >0
áp dụng bđt cosi cho 2 số dương ta có: \(x+4+\frac{25}{x+4}\ge2\sqrt{\left(x+4\right).\frac{25}{x+4}}=2\sqrt{25}=10\Rightarrow x+4+\frac{25}{x+4}-4\ge10-4=6\)
=> GTNN=6 <=> x=1
b) ĐK: x>=0, x khác 9
\(A=\frac{x-9+25}{\sqrt{x}+3}=\sqrt{x}-3+\frac{25}{\sqrt{x}+3}=\sqrt{x}+3+\frac{25}{\sqrt{x}+3}-6\)
tương tự ở trên để c/m 2 số dương rồi áp dụng bđt cosi \(A\ge2\sqrt{5}-6=4\)=> Min =4 <=> x=4
nếu vẫn k làm đc thì liên hệ mình mình giải nốt cho nha.
c) gọi là B đi. B=|x-3|+|x-5|
ta sẽ có bảng xét dấu:
Nếu \(x\le3\) <=> B=-x+3-x+5=-2x+8
x=<3 <=>-2x>-6 <=> -2x+8>2 <=> B>=2
Nếu 3<x<5 => B=x+3-x+5=0x+15=15=> B=15
Nếu x>=5=> B=x+3+x+5=2x+8
x>=5 <=> 2x>10 <=>2x+8>=18 <=> B>=18
=> Min B=2 <=> x=3
nhớ LI KE
b/ Ko biết yêu cầu
4/ \(E=\frac{x^2}{3}+\frac{x^2}{3}+\frac{x^2}{3}+\frac{1}{x^3}+\frac{1}{x^3}\ge5\sqrt[5]{\frac{x^6}{27x^6}}=\frac{5}{\sqrt[5]{27}}\)
Dấu "=" xảy ra khi \(\frac{x^2}{3}=\frac{1}{x^3}\Leftrightarrow x=\sqrt[5]{3}\)
\(F=x+\frac{1}{x^2}=\frac{x}{2}+\frac{x}{2}+\frac{1}{x^2}\ge3\sqrt[3]{\frac{x^2}{4x^2}}=\frac{3}{\sqrt[3]{4}}\)
Dấu "=" xảy ra khi \(\frac{x}{2}=\frac{1}{x^2}\Rightarrow x=\sqrt[3]{2}\)
6/ \(Q=\frac{\left(x+1\right)^2+16}{2\left(x+1\right)}=\frac{x+1}{2}+\frac{8}{x+1}\ge2\sqrt{\frac{8\left(x+1\right)}{2\left(x+1\right)}}=4\)
Dấu "=" xảy ra khi \(\frac{x+1}{2}=\frac{8}{x+1}\Leftrightarrow x=3\)
7/
\(R=\frac{\left(\sqrt{x}+3\right)^2+25}{\sqrt{x}+3}=\sqrt{x}+3+\frac{25}{\sqrt{x}+3}\ge2\sqrt{\frac{25\left(\sqrt{x}+3\right)}{\sqrt{x}+3}}=10\)
Dấu "=" xảy ra khi \(\sqrt{x}+3=\frac{25}{\sqrt{x}+3}\Leftrightarrow x=4\)
8/
\(S=x^2+\frac{2000}{x}=x^2+\frac{1000}{x}+\frac{1000}{x}\ge3\sqrt[3]{\frac{1000^2x^2}{x^2}}=300\)
Dấu "=" xảy ra khi \(x^2=\frac{1000}{x}\Leftrightarrow x=10\)
\(a,A=\frac{\sqrt{x}}{\sqrt{x}-2}+\frac{3}{\sqrt{x}+2}-\frac{9\sqrt{x}-10}{x-4}\left(x\ge0;x\ne16\right)\)
\(=\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{3\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\frac{9\sqrt{x}-10}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{x+2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{3\sqrt{x}-6}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\frac{9\sqrt{x}-10}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{x+2\sqrt{x}+3\sqrt{x}-6-9\sqrt{x}+10}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{x-4\sqrt{x}+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\frac{\left(\sqrt{x}\right)^2-2.\sqrt{x}.2+2^2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\frac{\left(\sqrt{x}-2\right)^2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\frac{\sqrt{x}-2}{\sqrt{x}+2}\)
Vây...
\(b,\)Ta có:\(x=4-2\sqrt{3}=\left(1-\sqrt{3}\right)^2\)
Thay \(x=\left(1-\sqrt{3}\right)^2\)vào A ta được:
\(A=\frac{\sqrt{\left(1-\sqrt{3}\right)^2}-2}{\sqrt{\left(1-\sqrt{3}\right)^2}+2}=\frac{\sqrt{3}-1-2}{\sqrt{3}-1+2}=\frac{\sqrt{3}-3}{\sqrt{3}-1}=\frac{-\sqrt{3}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}=-\sqrt{3}\)
\(\sqrt{2a^2+ab+2b^2}=\sqrt{\frac{5}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2}\ge\frac{5}{4}\left(a+b\right)\)
Tương tự cộng vế theo vế thì
\(M\ge\frac{5}{4}\left(2a+2b+2c\right)=\frac{5}{2}\left(a+b+c\right)=\frac{5}{2}\cdot2019\)
Dấu "=" xảy ra tại \(a=b=c=\frac{2019}{3}\)
bài 4 có trên mạng nha chị.tí e làm cách khác
bài 5 chị tham khảo bđt min cop ski r dùng svác là ra ạ.giờ e coi đá bóng,coi xong nghĩ tiếp ạ.
1.(√x -2)^2 ≥ 0 --> x -4√x +4 ≥ 0 --> x+16 ≥ 12 +4√x --> (x+16)/(3+√x) ≥4
--> Pmin=4 khi x=4
2. Đặt \(\sqrt{x^2-4x+5}=t\ge1\)1
=> M=2x2-8x+\(\sqrt{x^2-4x+5}\)+6=2(t2-5)+t+6
<=> M=2t2+t-4\(\ge\)2.12+1-4=-1
Mmin=-1 khi t=1 hay x=2
a)\(x+\frac{25}{x+4}=x+4+\frac{25}{x+4}-4\ge2\sqrt{\left(x+4\right).\frac{25}{x+4}}-4\)(Cô-si)
\(=2.5-4=6\)
Vậy: GTNN là 6 \(\Leftrightarrow x+4=\frac{25}{x+4}\Leftrightarrow x=1\)(do x >-4)
b)\(A=\frac{x-9+25}{\sqrt{x}+3}=\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)+25}{\sqrt{x}+3}=\sqrt{x}-3+\frac{25}{\sqrt{x}+3}\)
\(=\sqrt{x}+3+\frac{25}{\sqrt{x}+3}-6\ge2\sqrt{\left(\sqrt{x}+3\right).\frac{25}{\sqrt{x}+3}}-6=2.5-6=4\)
Vậy: A min = 4 <=> x = 4
c) Áp dụng bdt: \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)
Dấu "=" xảy ra \(\Leftrightarrow ab\ge0\)
Ta có: \(\left|x-3\right|+\left|x-5\right|=\left|3-x\right|+\left|x-5\right|\ge\left|3-x+x-5\right|=2\)
\("="\Leftrightarrow\left(3-x\right)\left(x-5\right)\ge0\Leftrightarrow3\le x\le5\)