\(B=\sqrt{7+4\sqrt{3}}+\sqrt{7-4\sqrt{3}}\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2018

\(B=\sqrt{7+4\sqrt{3}}+\sqrt{7-4\sqrt{3}}\)

    \(=\sqrt{\left(\sqrt{3}+2\right)^2}+\sqrt{\left(2-\sqrt{3}\right)^2}\)

     \(=\sqrt{3}+2+2-\sqrt{3}\)

   \(=4\)

Còn cách nữa là bình phương

29 tháng 12 2018

Đag làm thì ấn nhầm trả lời .V
Cách bình phương đây

\(B=\sqrt{7+4\sqrt{3}}+\sqrt{7-4\sqrt{3}}\)

\(\Rightarrow B^2=7+4\sqrt{3}+2\sqrt{\left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right)}+7-4\sqrt{3}\)

           \(=14+2\sqrt{49-48}\)

            \(=14+2\)

             \(=16\)

\(\Rightarrow B=\sqrt{16}=4\)

30 tháng 6 2018

\(1.\sqrt{2-\sqrt{3}}=\dfrac{\sqrt{4-2\sqrt{3}}}{\sqrt{2}}=\dfrac{\sqrt{3-2\sqrt{3}+1}}{\sqrt{2}}=\dfrac{\text{ |}\sqrt{3}-1\text{ |}}{\sqrt{2}}=\dfrac{\sqrt{3}-1}{\sqrt{2}}\) \(2.\sqrt{15-\sqrt{13+\sqrt{48}}}=\sqrt{15-\sqrt{12+2.2\sqrt{3}+1}}=\sqrt{14-2\sqrt{3}}\) \(3.\sqrt{48-10\sqrt{7+4\sqrt{3}}}=\sqrt{48-10\sqrt{4+2.2\sqrt{3}+3}}=\sqrt{48-10\left(2+\sqrt{3}\right)}=\sqrt{28-10\sqrt{3}}=\sqrt{25-2.5\sqrt{3}+3}=5-\sqrt{3}\) \(4.\sqrt{5-\sqrt{13+4\sqrt{3}}}=\sqrt{5-\sqrt{12+2.2\sqrt{3}+1}}=\sqrt{4-2\sqrt{3}}=\sqrt{3-2\sqrt{3}+1}=\sqrt{3}-1\)

7 tháng 11 2018

\(S^3=\left(\sqrt[3]{7+4\sqrt{3}+}\sqrt[3]{7-4\sqrt{3}}\right)^3\)

= \(7+4\sqrt{3}+7-4\sqrt{3}+3.\sqrt{7+4\sqrt{3}}.\sqrt{7-4\sqrt{3}}.\left(a+b\right)\)

= 14+\(3.\sqrt{49-48}.S\)

= 14+3S

=> S3-3S=14+3S-3S=14

7 tháng 11 2018

\(P=S^3-3S\)

\(P=\left(\sqrt[3]{7+4\sqrt{3}}+\sqrt[3]{7-4\sqrt{3}}\right)^3-3\left(\sqrt[3]{7+4\sqrt{3}}+\sqrt[3]{7-4\sqrt{3}}\right)\)

\(P=7+4\sqrt{3}+3\left(\sqrt[3]{7+4\sqrt{3}}\right)^2.\sqrt[3]{7-4\sqrt{3}}+3.\sqrt[3]{7+4\sqrt{3}}\left(\sqrt[3]{7-4\sqrt{3}}\right)^2+7-4\sqrt{3}\text{​​}\text{​​}-3\left(\sqrt[3]{7+4\sqrt{3}}+\sqrt[3]{7-4\sqrt{3}}\right)\)

\(P=14+3\sqrt[3]{7+4\sqrt{3}}.\sqrt[3]{7-4\sqrt{3}}\text{​​}\left(\sqrt[3]{7+4\sqrt{3}}+\sqrt[3]{7-4\sqrt{3}}\right)\text{​​}\text{​​}-3\left(\sqrt[3]{7+4\sqrt{3}}+\sqrt[3]{7-4\sqrt{3}}\right)\)

\(P=14+3\sqrt[3]{\left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right)}\text{​​}\left(\sqrt[3]{7+4\sqrt{3}}+\sqrt[3]{7-4\sqrt{3}}\right)\text{​​}\text{​​}-3\left(\sqrt[3]{7+4\sqrt{3}}+\sqrt[3]{7-4\sqrt{3}}\right)\)

\(P=14+3\sqrt[3]{49-48}\text{​​}\left(\sqrt[3]{7+4\sqrt{3}}+\sqrt[3]{7-4\sqrt{3}}\right)\text{​​}\text{​​}-3\left(\sqrt[3]{7+4\sqrt{3}}+\sqrt[3]{7-4\sqrt{3}}\right)\)

\(P=14+3\text{​​}\left(\sqrt[3]{7+4\sqrt{3}}+\sqrt[3]{7-4\sqrt{3}}\right)\text{​​}\text{​​}-3\left(\sqrt[3]{7+4\sqrt{3}}+\sqrt[3]{7-4\sqrt{3}}\right)\)

\(P=14\)

22 tháng 7 2019

\(7\sqrt{2x}-2\sqrt{2x}-4=3\sqrt{2x}\)

\(7\sqrt{2x}-2\sqrt{2x}-3\sqrt{2x}=4\)

\(2\sqrt{2x}=4\)

\(\sqrt{2x}=\frac{4}{2}=2=\sqrt{4}\)

\(\rightarrow2x=4\rightarrow x=2\)

\(\sqrt{x^2-6x+9}=\sqrt{4+2\sqrt{3}}\)

\(\sqrt{\left(x-3\right)^2}=\sqrt{1+2.1\sqrt{3}+\left(\sqrt{3}\right)^2}\)

\(\sqrt{\left(x-3\right)^2}=\sqrt{\left(1+\sqrt{3}\right)^2}\)

\(\left|x-3\right|=1+\sqrt{3}\)

Chia 2 TH

Với x lớn hơn hoặc bằng 3 => \(x=4+\sqrt{3}\)

Với x bé hơn 3 => \(x=2+\sqrt{3}\)

3 tháng 11 2016

Điều kiện \(0\le x\le5\)

\(PT\Leftrightarrow x+5-x+2\sqrt{5x-x^2}=9\)

\(\Leftrightarrow\sqrt{5x-x^2}=2\)

\(\Leftrightarrow x^2-5x+4=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=4\end{cases}}\)

3.

\(•x=3+\sqrt{2}\\ x^2=\left(3+\sqrt{2}\right)^2\\ x^2=9+2.3.\sqrt{2}+2\\ x^2=11+6\sqrt{2}\\• y=\sqrt{11+6\sqrt{2}}\\ y^2=\left(\sqrt{11+6\sqrt{2}}\right)^2\\ y^2=11+6\sqrt{2}\)

\(\Rightarrow x^2=y^2=11+6\sqrt{2}\)

23 tháng 9 2017

1. ta có : \(4\sqrt{7}=\sqrt{112}\)

\(3\sqrt{3}=\sqrt{27}\)

ta thấy : \(\sqrt{112}>\sqrt{27}\) hay \(4\sqrt{7}>3\sqrt{3}\)

2. \(\dfrac{1}{4}\sqrt{82}=\sqrt{\dfrac{41}{8}}\)

\(6\sqrt{\dfrac{1}{7}}=\sqrt{\dfrac{36}{7}}\)

ta thấy :\(\sqrt{\dfrac{41}{8}}< \sqrt{\dfrac{36}{7}}\) hay \(\dfrac{1}{4}\sqrt{82}< 6\sqrt{\dfrac{1}{7}}\)

3. \(x^2=\left(3+\sqrt{2}\right)^2\)

\(y^2=11+6\sqrt{2}\)=\(\left(3+\sqrt{2}\right)^2\)

ta thấy : \(x^2=y^2\Rightarrow x=y\)