Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1.\sqrt{2-\sqrt{3}}=\dfrac{\sqrt{4-2\sqrt{3}}}{\sqrt{2}}=\dfrac{\sqrt{3-2\sqrt{3}+1}}{\sqrt{2}}=\dfrac{\text{ |}\sqrt{3}-1\text{ |}}{\sqrt{2}}=\dfrac{\sqrt{3}-1}{\sqrt{2}}\) \(2.\sqrt{15-\sqrt{13+\sqrt{48}}}=\sqrt{15-\sqrt{12+2.2\sqrt{3}+1}}=\sqrt{14-2\sqrt{3}}\) \(3.\sqrt{48-10\sqrt{7+4\sqrt{3}}}=\sqrt{48-10\sqrt{4+2.2\sqrt{3}+3}}=\sqrt{48-10\left(2+\sqrt{3}\right)}=\sqrt{28-10\sqrt{3}}=\sqrt{25-2.5\sqrt{3}+3}=5-\sqrt{3}\) \(4.\sqrt{5-\sqrt{13+4\sqrt{3}}}=\sqrt{5-\sqrt{12+2.2\sqrt{3}+1}}=\sqrt{4-2\sqrt{3}}=\sqrt{3-2\sqrt{3}+1}=\sqrt{3}-1\)
\(S^3=\left(\sqrt[3]{7+4\sqrt{3}+}\sqrt[3]{7-4\sqrt{3}}\right)^3\)
= \(7+4\sqrt{3}+7-4\sqrt{3}+3.\sqrt{7+4\sqrt{3}}.\sqrt{7-4\sqrt{3}}.\left(a+b\right)\)
= 14+\(3.\sqrt{49-48}.S\)
= 14+3S
=> S3-3S=14+3S-3S=14
\(P=S^3-3S\)
\(P=\left(\sqrt[3]{7+4\sqrt{3}}+\sqrt[3]{7-4\sqrt{3}}\right)^3-3\left(\sqrt[3]{7+4\sqrt{3}}+\sqrt[3]{7-4\sqrt{3}}\right)\)
\(P=7+4\sqrt{3}+3\left(\sqrt[3]{7+4\sqrt{3}}\right)^2.\sqrt[3]{7-4\sqrt{3}}+3.\sqrt[3]{7+4\sqrt{3}}\left(\sqrt[3]{7-4\sqrt{3}}\right)^2+7-4\sqrt{3}\text{}\text{}-3\left(\sqrt[3]{7+4\sqrt{3}}+\sqrt[3]{7-4\sqrt{3}}\right)\)
\(P=14+3\sqrt[3]{7+4\sqrt{3}}.\sqrt[3]{7-4\sqrt{3}}\text{}\left(\sqrt[3]{7+4\sqrt{3}}+\sqrt[3]{7-4\sqrt{3}}\right)\text{}\text{}-3\left(\sqrt[3]{7+4\sqrt{3}}+\sqrt[3]{7-4\sqrt{3}}\right)\)
\(P=14+3\sqrt[3]{\left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right)}\text{}\left(\sqrt[3]{7+4\sqrt{3}}+\sqrt[3]{7-4\sqrt{3}}\right)\text{}\text{}-3\left(\sqrt[3]{7+4\sqrt{3}}+\sqrt[3]{7-4\sqrt{3}}\right)\)
\(P=14+3\sqrt[3]{49-48}\text{}\left(\sqrt[3]{7+4\sqrt{3}}+\sqrt[3]{7-4\sqrt{3}}\right)\text{}\text{}-3\left(\sqrt[3]{7+4\sqrt{3}}+\sqrt[3]{7-4\sqrt{3}}\right)\)
\(P=14+3\text{}\left(\sqrt[3]{7+4\sqrt{3}}+\sqrt[3]{7-4\sqrt{3}}\right)\text{}\text{}-3\left(\sqrt[3]{7+4\sqrt{3}}+\sqrt[3]{7-4\sqrt{3}}\right)\)
\(P=14\)
\(7\sqrt{2x}-2\sqrt{2x}-4=3\sqrt{2x}\)
\(7\sqrt{2x}-2\sqrt{2x}-3\sqrt{2x}=4\)
\(2\sqrt{2x}=4\)
\(\sqrt{2x}=\frac{4}{2}=2=\sqrt{4}\)
\(\rightarrow2x=4\rightarrow x=2\)
\(\sqrt{x^2-6x+9}=\sqrt{4+2\sqrt{3}}\)
\(\sqrt{\left(x-3\right)^2}=\sqrt{1+2.1\sqrt{3}+\left(\sqrt{3}\right)^2}\)
\(\sqrt{\left(x-3\right)^2}=\sqrt{\left(1+\sqrt{3}\right)^2}\)
\(\left|x-3\right|=1+\sqrt{3}\)
Chia 2 TH
Với x lớn hơn hoặc bằng 3 => \(x=4+\sqrt{3}\)
Với x bé hơn 3 => \(x=2+\sqrt{3}\)
Điều kiện \(0\le x\le5\)
\(PT\Leftrightarrow x+5-x+2\sqrt{5x-x^2}=9\)
\(\Leftrightarrow\sqrt{5x-x^2}=2\)
\(\Leftrightarrow x^2-5x+4=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=4\end{cases}}\)
3.
\(•x=3+\sqrt{2}\\ x^2=\left(3+\sqrt{2}\right)^2\\ x^2=9+2.3.\sqrt{2}+2\\ x^2=11+6\sqrt{2}\\• y=\sqrt{11+6\sqrt{2}}\\ y^2=\left(\sqrt{11+6\sqrt{2}}\right)^2\\ y^2=11+6\sqrt{2}\)
\(\Rightarrow x^2=y^2=11+6\sqrt{2}\)
1. ta có : \(4\sqrt{7}=\sqrt{112}\)
\(3\sqrt{3}=\sqrt{27}\)
ta thấy : \(\sqrt{112}>\sqrt{27}\) hay \(4\sqrt{7}>3\sqrt{3}\)
2. \(\dfrac{1}{4}\sqrt{82}=\sqrt{\dfrac{41}{8}}\)
\(6\sqrt{\dfrac{1}{7}}=\sqrt{\dfrac{36}{7}}\)
ta thấy :\(\sqrt{\dfrac{41}{8}}< \sqrt{\dfrac{36}{7}}\) hay \(\dfrac{1}{4}\sqrt{82}< 6\sqrt{\dfrac{1}{7}}\)
3. \(x^2=\left(3+\sqrt{2}\right)^2\)
\(y^2=11+6\sqrt{2}\)=\(\left(3+\sqrt{2}\right)^2\)
ta thấy : \(x^2=y^2\Rightarrow x=y\)
\(B=\sqrt{7+4\sqrt{3}}+\sqrt{7-4\sqrt{3}}\)
\(=\sqrt{\left(\sqrt{3}+2\right)^2}+\sqrt{\left(2-\sqrt{3}\right)^2}\)
\(=\sqrt{3}+2+2-\sqrt{3}\)
\(=4\)
Còn cách nữa là bình phương
Đag làm thì ấn nhầm trả lời .V
Cách bình phương đây
\(B=\sqrt{7+4\sqrt{3}}+\sqrt{7-4\sqrt{3}}\)
\(\Rightarrow B^2=7+4\sqrt{3}+2\sqrt{\left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right)}+7-4\sqrt{3}\)
\(=14+2\sqrt{49-48}\)
\(=14+2\)
\(=16\)
\(\Rightarrow B=\sqrt{16}=4\)