Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
a) \(\frac{2}{5}:8=\frac{2}{5}:\frac{8}{1}=\frac{2}{5}\cdot\frac{1}{8}=\frac{1}{5}\cdot\frac{1}{4}=\frac{1}{20}\)
\(\frac{4}{5}:8=\frac{4}{5}\cdot\frac{1}{8}=\frac{1}{5}\cdot\frac{1}{2}=\frac{1}{10}\)
Mà \(\frac{1}{20}\ne\frac{1}{10}\)nên \(\frac{2}{5}:8\ne\frac{4}{5}:8\)
=> không thể lập được thành tỉ lệ thức
b) \(2\frac{1}{3}=\frac{2\cdot3+1}{3}=\frac{7}{3}\)
\(3\frac{1}{4}:13=\frac{13}{4}:13=\frac{13}{4}\cdot\frac{1}{13}=\frac{1}{4}\)
=> \(\frac{7}{3}\ne\frac{1}{4}\)hoặc \(2\frac{1}{3}\ne3\frac{1}{4}:13\)
=> không lập được tỉ lệ thức
Bài 2:
a) \(\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|-6x=0\)
\(\Rightarrow\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|=6x\)
Ta có: \(\left|x+1\right|\ge0;\left|x+2\right|\ge0;\left|x+4\right|\ge0;\left|x+5\right|\ge0\)
\(\Rightarrow\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|\ge0\)
\(\Rightarrow6x\ge0\)
\(\Rightarrow x\ge0\)
\(\Rightarrow\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|=x+1+x+2+x+4+x+5=6x\)
\(\Rightarrow4x+12=6x\)
\(\Rightarrow2x=12\)
\(\Rightarrow x=6\)
Vậy x = 6
b) Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x-2}{2}=\frac{y-3}{3}=\frac{z-3}{4}=\frac{2y-6}{6}=\frac{3z-9}{12}=\frac{x-2-2y+6+3z-9}{2-6+12}=\frac{\left(x-2y+3z\right)-\left(2-6+9\right)}{8}\)
\(=\frac{14-5}{8}=\frac{9}{8}\)
+) \(\frac{x-2}{2}=\frac{9}{8}\Rightarrow x-2=\frac{9}{4}\Rightarrow x=\frac{17}{4}\)
+) \(\frac{y-3}{3}=\frac{9}{8}\Rightarrow y-3=\frac{27}{8}\Rightarrow y=\frac{51}{8}\)
+) \(\frac{z-3}{4}=\frac{9}{8}\Rightarrow z-3=\frac{9}{2}\Rightarrow z=\frac{15}{2}\)
Vậy ...
c) \(5^x+5^{x+1}+5^{x+2}=3875\)
\(\Rightarrow5^x+5^x.5+5^x.5^2=3875\)
\(\Rightarrow5^x.\left(1+5+5^2\right)=3875\)
\(\Rightarrow5^x.31=3875\)
\(\Rightarrow5^x=125\)
\(\Rightarrow5^x=5^3\)
\(\Rightarrow x=3\)
Vậy x = 3
5,
Gọi số người lúc đầu ba đơn vị là x,y,z (người)
Số người lúc đầu ở đơn vị I là \(\dfrac{5}{4}x\)
Số người lúc đầu ở đơn vị II là \(\dfrac{10}{9}y\)
Số người lúc đầu ở đơn vị III là \(\dfrac{10}{11}z\)
Theo bài ra ta có \(\dfrac{5}{4}x=\dfrac{10}{9}y=\dfrac{10}{11}z\)
\(\Rightarrow\dfrac{5x}{4.10}=\dfrac{10y}{9.10}=\dfrac{10z}{11.10}\)
\(\Rightarrow\dfrac{x}{8}=\dfrac{y}{9}=\dfrac{z}{11}\)
Theo tính chất của dãy tỉ số bằng nhau:
\(\dfrac{x}{8}=\dfrac{y}{9}=\dfrac{z}{11}=\dfrac{x+y+z}{8+9+11}=\dfrac{112}{28}=4\)
\(\Rightarrow\dfrac{x}{8}=4\Rightarrow x=32\)
\(\dfrac{y}{9}=4\Rightarrow y=36\)
\(\dfrac{z}{11}=4\Rightarrow z=44\)
Vậy...
a, Ta có :
\(3:\dfrac{5}{6}=3.\dfrac{6}{5}=\dfrac{5}{2}=2,5\)
\(\dfrac{4}{5}:8=\dfrac{4}{5}.\dfrac{8}{1}=\dfrac{1}{10}=0,1\)
Vì 2,5 \(\ne\) 0,1
=> k thể lập đc thành các TL thức từ các số trên
mk sửa xíu nha
a,Ta có:
\(3:\dfrac{5}{6}=\dfrac{18}{5}=3,6\)
\(\dfrac{4}{5}:8=\dfrac{1}{10}=0,1\)
Vì 3,6 \(\ne\) 0,1
=> k thể lập đc TL thức từ các số trên
Vậy ....
Bài 1:
\(S=\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)
\(=\left(\dfrac{a}{b+c}+1\right)+\left(\dfrac{b}{c+a}+1\right)+\left(\dfrac{c}{a+b}+1\right)-3\)
\(=\dfrac{a+b+c}{b+c}+\dfrac{a+b+c}{c+a}+\dfrac{a+b+c}{a+b}-3\)
\(=\left(a+b+c\right)\left(\dfrac{1}{b+c}+\dfrac{1}{c+a}+\dfrac{1}{a+b}\right)-3\)
\(=2007.\dfrac{1}{90}-3\)
\(=19,3\)
Vậy S = 19,3
5b)\(S=1+3+3^2+...+3^{2013}\)
\(\Rightarrow3S=3+3^2+3^3+...+3^{2014}\)
\(\Rightarrow3S-S=3^{2014}-1\)
\(\Rightarrow S=\dfrac{3^{2014}-1}{2}\)