K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: \(BF=FC=\dfrac{BC}{2}\)

\(AE=ED=\dfrac{AD}{2}\)

mà BC=AD

nên BF=FC=AE=ED

Xét tứ giác BFDE có

BF//DE

BF=DE

Do đó: BFDE là hình bình hành

=>EB=DF(3)

b: Ta có: BFDE là hình bình hành

=>BD cắt FE tại trung điểm của mỗi đường

mà O là trung điểm của FE

nên O là trung điểm của BD

Ta có: ABCD là hình bình hành

=>AC cắt BD tại trung điểm của mỗi đường

mà O là trung điểm của BD

nên O là trung điểm của AC

=>AC,BD,EF đồng quy tại O

c: Xét ΔABD có

BE,AO là các đường trung tuyến

BE cắt AO tại I

Do đó: I là trọng tâm của ΔABD

=>\(BI=\dfrac{2}{3}BE\left(1\right)\)

Xét ΔDBC có

DF,CO là các đường trung tuyến

DF cắt CO tại K

Do đó: K là trọng tâm của ΔDBC

=>\(DK=\dfrac{2}{3}DF\left(2\right)\)

Từ (1),(2),(3) suy ra BI=DK

Xét tứ giác BIDK có

BI//DK

BI=DK

Do đó: BIDK là hình bình hành

=>BK=DI

Xét ΔBCI có

F là trung điểm của CB

FK//BI

Do đó: K là trung điểm của CI

=>CK=KI

Xét ΔAKD có

E là trung điểm của AD

EI//KD

Do đó: I là trung điểm của AK

=>AI=IK

Do đó: AI=IK=KC

17 tháng 10 2023

a) Tam giác ABE= tam giác CDF

=> EB=DF

b) Ta có: 

\(\widehat{ABE}=\widehat{FCD}\)

\(\Rightarrow\widehat{EDF}=\widehat{EBF}=\widehat{BEA}\)

=> EB//CD mà ED//BF

=> EBFD là h.b.h

c) Gọi K là trung điểm EF

=> K là trung điểm AC, BD, EF

=> AC, BD, EF đồng quy tại K

9 tháng 12 2018

giups mình với nhé

Bai 1 : Cho hình bình hành ABCD ; góc BAD = 120 độ ; AB = 2 AD a) CMR: Tia phân giác của góc ADC đi qua trung điểm E của AB .b) Gọi F là trung điểm DC . CMR tam giác ADF đều và AD vuông góc với ACBài 2: Cho hình bình hành ABCD có BC = 2AB . Gọi M là trung điểm AD. Kẻ CE vuông góc với AB ; E nằm giữa A và B . CMR:              góc EMD = 3 góc AEMBìa 3: Cho tam giác ABC vuông tại A . Đường cao AH . Từ H kẻ HE , HF...
Đọc tiếp

Bai 1 : Cho hình bình hành ABCD ; góc BAD = 120 độ ; AB = 2 AD 
a) CMR: Tia phân giác của góc ADC đi qua trung điểm E của AB .
b) Gọi F là trung điểm DC . CMR tam giác ADF đều và AD vuông góc với AC

Bài 2: Cho hình bình hành ABCD có BC = 2AB . Gọi M là trung điểm AD. Kẻ CE vuông góc với AB ; E nằm giữa A và B . CMR:              góc EMD = 3 góc AEM

Bìa 3: Cho tam giác ABC vuông tại A . Đường cao AH . Từ H kẻ HE , HF vuông góc với AB và AC . Kẻ AI vuông góc với EF ( I \(\in\)BC). CMR: a) I là trung điểm BC 
          b) Cho tam giác ABC vuông tại A. Đường cao AH. Gọi E, F lần lượt là các hình chiếu của H xuống AB, AC. Gọi I là trung điểm của BC. CMR: AI vuông góc với EF.

Bài 4: Cho tam giác ABC cân tại A . D bất kì thuộc BC . Qua D kẻ đường thẳng vuông góc với BC cắt AB và AC lần lượt tại E,F . Gọi I,K lần lượt là trung điểm của BE và CF .
a) CMR: AKDI là hình bình hành 
b) Nêu thêm điều kiện của tam giác ABC và của điểm D để DIAK là hình vuông

0

a Xét ΔEFB có

I,M lần lượt là trung điểm của EF,EB

=>IM là đường trung bình

=>IM//FB và IM=FB/2

Xét ΔDFB có

N,K lần lượt là trung điểm của DB,DF

=>NK là đường trung bình

=>NK//FB và NK=FB/2

=>IM//NK và IM=NK

b: Xét ΔFED có I,K lần lượt là trung điểm của FE,FD

=>IK là đường trung bình

=>IK//ED

=>IK vuông góc AB

mà AB//IM

nên IK vuông góc IM

Xét tứ giác IKNM có

IM//KN

IM=KN

IK vuông góc IM

=>IKNM là hình chữ nhật

Bài 2: Cho hình bình hành ABCD có BC = 2AB . Gọi M là trung điểm AD. Kẻ CE vuông góc với AB ; E nằm giữa A và B . CMR:              góc EMD = 3 góc AEMBìa 3: Cho tam giác ABC vuông tại A . Đường cao AH . Từ H kẻ HE , HF vuông góc với AB và AC . Kẻ AI vuông góc với EF ( I thuộc BC). CMR: a) I là trung điểm BC           b) Cho tam giác ABC vuông tại A. Đường cao AH. Gọi E, F lần lượt là các hình chiếu của H...
Đọc tiếp

Bài 2: Cho hình bình hành ABCD có BC = 2AB . Gọi M là trung điểm AD. Kẻ CE vuông góc với AB ; E nằm giữa A và B . CMR:              góc EMD = 3 góc AEM

Bìa 3: Cho tam giác ABC vuông tại A . Đường cao AH . Từ H kẻ HE , HF vuông góc với AB và AC . Kẻ AI vuông góc với EF ( I thuộc BC). CMR: a) I là trung điểm BC 
          b) Cho tam giác ABC vuông tại A. Đường cao AH. Gọi E, F lần lượt là các hình chiếu của H xuống AB, AC. Gọi I là trung điểm của BC. CMR: AI vuông góc với EF.

Bài 4: Cho tam giác ABC cân tại A . D bất kì thuộc BC . Qua D kẻ đường thẳng vuông góc với BC cắt AB và AC lần lượt tại E,F . Gọi I,K lần lượt là trung điểm của BE và CF .
a) CMR: AKDI là hình bình hành 
b) Nêu thêm điều kiện của tam giác ABC và của điểm D để DIAK là hình vuông

2
14 tháng 7 2018

Bài 1 nếu chứng minh cũng chỉ được góc EMD= 2 góc AEM thôi

14 tháng 7 2018

chứng minh kiểu gì vậy