\(\sqrt{5x^2-3x-8}\)

b)...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 6 2019

\(a,\)\(\sqrt{5x^2-3x-8}\)

\(đkxđ\Leftrightarrow5x^2-3x-8\ge0\)

\(\Rightarrow5x^2+5x-8x-8\ge0\)

\(\Rightarrow5x\left(x+1\right)-8\left(x+1\right)\ge0\)

\(\Rightarrow\left(x+1\right)\left(5x-8\right)\ge0\)

\(\Rightarrow\orbr{\begin{cases}x+1\ge0;5x-8\ge0\\x+1< 0;5x-8< 0\end{cases}\Rightarrow\orbr{\begin{cases}x\ge-1;x\ge\frac{8}{5}\\x< -1;x< \frac{8}{5}\end{cases}\Rightarrow}\orbr{\begin{cases}x\ge\frac{8}{5}\\x< -1\end{cases}}}\)

16 tháng 6 2019

\(b,\)\(\sqrt{5x^2+4x+7}\)

\(đkxđ\Leftrightarrow5x^2+4x+7\ge0\)

\(\Rightarrow5\left(x^2+\frac{4}{5}x+\frac{7}{5}\right)\ge0\)

\(\Rightarrow5\left(x^2+2.\frac{2}{5}+\frac{4}{25}-\frac{4}{25}+\frac{7}{5}\right)\ge0\)

\(\Rightarrow5\left[\left(x+\frac{2}{5}\right)^2+\frac{31}{25}\right]\ge0\)

\(\Rightarrow5\left(x+\frac{2}{5}\right)^2+\frac{31}{5}\ge0\)( luôn đúng )

\(\Rightarrow\)Biểu thức được xác định với \(\forall x\)

3 tháng 8 2019

\(a,\frac{1}{\sqrt{5x+15}}\)

Để biểu thức trên có nghĩa :

\(\Rightarrow\sqrt{5x+15}\ge0\)

\(\Rightarrow5\left(x+3\right)\ge0\)

\(\Rightarrow x\ge-3\)

Vậy....

AH
Akai Haruma
Giáo viên
31 tháng 7 2020

h)

ĐK: \(\left\{\begin{matrix} 3x-12\geq 0\\ x-5\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 4\\ x\neq 5\end{matrix}\right.\)

k)

ĐK: \(\left\{\begin{matrix} x-1\geq 0\\ x-2\neq 0\\ x-3\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 1\\ x\neq 2\\ x\neq 3\end{matrix}\right.\)

m)

ĐK: \(\left\{\begin{matrix} x-2\neq 0\\ x-4\neq 0\\ \frac{2x-3}{x-2}\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\neq 2\\ x\neq 4\\ x>2\end{matrix}\right.\) hoặc \(x\leq \frac{3}{2}\)

AH
Akai Haruma
Giáo viên
31 tháng 7 2020

Lời giải:

a) ĐK: $-4x+16\geq 0\Leftrightarrow x\leq 4$

b) ĐK: \(\left\{\begin{matrix} 2x-1\neq 0\\ \frac{-3}{2x-1}\geq 0\end{matrix}\right.\Leftrightarrow 2x-1< 0\Leftrightarrow x< \frac{1}{2}\)

c) ĐK: $-5x^2\geq 0\Leftrightarrow 5x^2\leq 0$. Mà $5x^2\geq 0$ với mọi $x\in\mathbb{R}$ nên biểu thức có nghĩa khi $5x^2=0\Leftrightarrow x=0$

d) ĐK:

\(\left\{\begin{matrix} -x^2-4x-4\neq 0\\ \frac{-3}{-x^2-4x-4}\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} -(x+2)^2\neq 0\\ \frac{3}{(x+2)^2}\geq 0\end{matrix}\right.\Leftrightarrow x\neq -2\)

e) ĐK: $\frac{2x-4}{-3}\geq 0\Leftrightarrow 2x-4\leq 0\Leftrightarrow x\leq 2$

f) ĐK: \(\left\{\begin{matrix} 3x-9\geq 0\\ 2x-8>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 3\\ x>4\end{matrix}\right.\Leftrightarrow x>4\)

13 tháng 8 2018

a) ĐKXĐ của biểu thức \(\sqrt{\dfrac{5}{7-x^2}}\)\(7-x^2\) > 0

<=> \(x^2< 7\)

<=> x < \(\sqrt{7}\)

Vậy ĐKXĐ của biểu thức \(\sqrt{\dfrac{5}{7-x^2}}\) là x < \(\sqrt{7}\)

b) ĐKXĐ của biểu thức \(\sqrt{\dfrac{2x-1}{2-x}}\)\(\dfrac{2x-1}{2-x}\) ≥ 0 ; 2 - x ≠ 0

<=> \(\dfrac{2x-1}{2-x}>0\)

<=> 2x-1 và 2-x cùng dấu

+ TH1 : 2x-1 > 0 và 2-x>0

<=> x > \(\dfrac{1}{2}\) và x < 2

<=> \(\dfrac{1}{2}< x< 2\)

+ TH2 : 2x-1 < 0 và 2-x < 0

<=> x < \(\dfrac{1}{2}\) và x > 2 ( Vô lý)

=> Loại

Vậy ĐKXĐ của biểu thức \(\sqrt{\dfrac{2x-1}{2-x}}\)\(\dfrac{1}{2}< x< 2\)

c) ĐKXĐ của biểu thức \(\sqrt{5x^2-3x-8}\) là 5x2 - 3x - 8 ≥ 0

<=> 5x2 + 5x - 8x - 8 ≥ 0

<=> 5x.(x+1) - 8.(x+1) ≥ 0

<=> (5x - 8).(x+1) ≥ 0

+ TH1 : 5x-8 ≥ 0 và x+1 ≥ 0

<=> x ≥ \(\dfrac{8}{5}\) và x ≥ -1

<=> x ≥ \(\dfrac{8}{5}\)

+ TH2 : 5x-8 ≤ 0 và x+1 ≤ 0

<=> x ≤ \(\dfrac{8}{5}\) và x ≤ -1

<=> x ≤ -1

Vậy ĐKXĐ của biểu thức \(\sqrt{5x^2-3x-8}\) là x ≤ -1 hoặc x ≥ \(\dfrac{8}{5}\)

8 tháng 12 2018

a) Để biểu thức \(\sqrt{\dfrac{5}{7-x^2}}\) xác định thì \(\left\{{}\begin{matrix}7-x^2\ge0\\7-x^2\ne0\end{matrix}\right.\)\(\Leftrightarrow7-x^2>0\Leftrightarrow7>x^2\Leftrightarrow\)\(\left\{{}\begin{matrix}x< \sqrt{7}\\x>-\sqrt{7}\end{matrix}\right.\)

Vậy \(-\sqrt{7}< x< \sqrt{7}\) thì biểu thức \(\sqrt{\dfrac{5}{7-x^2}}\) được xác định

b) Để biểu thức \(\sqrt{\dfrac{2x-1}{2-x}}\) được xác định thì \(\dfrac{2x-1}{2-x}\ge0\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}\left\{{}\begin{matrix}2x-1\ge0\\2-x>0\end{matrix}\right.\\\left\{{}\begin{matrix}2x-1\le0\\2-x< 0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge\dfrac{1}{2}\\x< 2\end{matrix}\right.\\\left\{{}\begin{matrix}x\le\dfrac{1}{2}\\x>2\end{matrix}\right.\end{matrix}\right.\)

Vì trường hợp \(\left\{{}\begin{matrix}x\le\dfrac{1}{2}\\x>2\end{matrix}\right.\) không thỏa mãn

Vậy \(\dfrac{1}{2}\le x< 2\) thì biểu thức \(\sqrt{\dfrac{2x-1}{2-x}}\) được xác định

c) Để biểu thức \(\sqrt{5x^2-3x-8}\) được xác định thì \(5x^2-3x-8\ge0\Leftrightarrow5x^2+5x-8x-8\ge0\Leftrightarrow5x\left(x+1\right)-8\left(x+1\right)\ge0\Leftrightarrow\left(x+1\right)\left(5x-8\right)\ge0\Leftrightarrow\)\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x+1\ge0\\5x-8\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x+1\le0\\5x-8\le0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge-1\\x\ge\dfrac{8}{5}\end{matrix}\right.\\\left\{{}\begin{matrix}x\le-1\\x\le\dfrac{8}{5}\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}x\ge\dfrac{8}{5}\\x\le-1\end{matrix}\right.\)

Vậy x\(\ge\dfrac{8}{5}\) hoặc \(x\le-1\) thì biểu thức \(\sqrt{5x^2-3x-8}\) được xác định

5 tháng 7 2017

tìm x để bt xác định

                               

                                            cho mỗi biểu thức trong căn  

                                                                         

                                                                                                  lớn hơn hoặc =0