K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
7 tháng 11 2020

Ta có \(P=4x^2-8x+a+b+2=\left(2x-2\right)^2+a+b-2\ge a+b-2\)

Vậy GTNN của \(P=a+b-2=2\Leftrightarrow a+b=4\)

Xét \(a^3+b^3+3ab\left(a+b\right)+2019=\left(a+b\right)^3+2019=4^3+2019\)

\(=64+2019=2083\)

7 tháng 11 2020

cho e hỏi a3+b3+3ab(a+b)+2019 sao lại ra (a+b)3+2019?

14 tháng 7 2017

Bài 1

a) \(A=\left(x+1\right)\left(2x-1\right)=2x^2+x-1=2\left(x^2+\frac{x}{2}-\frac{1}{2}\right)=2\left(x^2+2.\frac{1}{4}.x+\frac{1}{16}-\frac{9}{16}\right)\)\(=2\left[\left(x+\frac{1}{4}\right)^2-\frac{9}{16}\right]=2\left(x+\frac{1}{4}\right)^2-\frac{9}{8}\)

Vì \(\left(x+\frac{1}{4}\right)^2\ge0\Rightarrow2\left(x+\frac{1}{4}\right)^2\ge0\Rightarrow2\left(x+\frac{1}{4}\right)^2-\frac{9}{8}\ge-\frac{9}{8}\)

Dấu "=" xảy ra khi \(\left(x+\frac{1}{4}\right)^2=0\Leftrightarrow x+\frac{1}{4}=0\Leftrightarrow x=-\frac{1}{4}\)

Vậy minA=-9/8 khi x=-1/4

b)\(B=4x^2-4xy+2y^2+1=\left(4x^2-4xy+y^2\right)+y^2+1=\left(2x-y\right)^2+y^2+1\)

Vì \(\hept{\begin{cases}\left(2x-y\right)^2\ge0\\y^2\ge0\end{cases}}\)=>\(\left(2x-y\right)^2+y^2\ge0\Rightarrow B=\left(2x-y\right)^2+y^2+1\ge1\)

Dấu "=" xảy ra khi (2x-y)2=y2=0 <=> 2x-y=y=0 <=> x=y=0

Vậy minB=1 khi x=y=0

14 tháng 7 2017

lý luận tương tự bài 1, bài này mình làm tắt

Bài 2:

a) \(C=5x-3x^2+2=-\left(3x^2-5x-2\right)=-3\left(x^2-\frac{5}{3}x-\frac{2}{3}\right)\)

\(=-3\left(x^2-2.\frac{5}{6}.x+\frac{25}{35}-\frac{49}{36}\right)=-3\left[\left(x-\frac{5}{6}\right)^2-\frac{49}{36}\right]=\frac{49}{12}-3\left(x-\frac{5}{6}\right)^2\le\frac{49}{12}\)

Dấu "=" xảy ra khi x=5/6

b)\(D=-8x^2+4xy-y^2+3=3-\left(8x^2-4xy+y^2\right)=3-\left[\left(4x^2-4xy+y^2\right)+4x^2\right]\)

\(=3-\left[\left(2x-y\right)^2+4x^2\right]\le3\)

Dấu "=" xảy ra khi x=y=0

13 tháng 3 2017

a, chắc bạn chép nhầm đề rồi đó nếu mà là 3ab thì k làm đc đâu

M=a+ a- b3 + b2 + 3ab2 -2ab +3ab2

= (a-b)3 +(a-b)2

= 343+49=392

b, P= -(3x+4x2+1/4x-2014)

= - [ (2x)2 -4x+1 +x +1/4x - 2015]

= -[ (2x-1)2- (2x-1)2/4x +1 -2015]

Max P = 2014   X=1/2

18 tháng 12 2016

\(A=x^2-4x^2+2-1=\left(x-2\right)^2-1\)

suy ra Amin=-1

18 tháng 12 2016

\(B=4x^2+4x+11=4\left(x^2+x+\frac{11}{4}\right)=4\left(x^2+2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{10}{4}\right)=4\left(x+\frac{1}{2}\right)^2+10\) Suy ra Bmin = 10

2 tháng 7 2018

1/ Sửa đề a+b=1

\(M=\left(a+b\right)\left(a^2-ab+b^2\right)+3ab\left[\left(a+b\right)^2-2ab\right]+6a^2b^2\left(a+b\right)\)

\(=\left(a+b\right)\left[\left(a+b\right)^2-3ab\right]+3ab\left[\left(a+b\right)^2-2ab\right]+6a^2b^2\left(a+b\right)\)

Thay a+b=1 vào M ta được:

\(M=1-3ab+3ab\left[1-2ab\right]+6a^2b^2\)

\(=1-3ab+3ab-6a^2b^2+6a^2b^2=1\)

2/ Đặt \(A=\frac{2n^2+7n-2}{2n-1}=\frac{\left(2n^2-n\right)+\left(8n-4\right)+2}{2n-1}=\frac{n\left(2n-1\right)+4\left(2n-1\right)+2}{2n-1}=n+4+\frac{2}{2n-1}\)

Để \(A\in Z\Leftrightarrow2n-1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

Ta có bảng:

2n-11-12-2
n103/2 (loại)-1/2 (loại)
     

Vậy n={1;0}

2 tháng 7 2018

câu 4c phải là x-1 mới đúng chứ

24 tháng 6 2018

Tìm giá trị nhỏ nhất và lớn nhất, mình sẽ làm hai bài mẫu, các bài còn lại bạn làm tương tự

Giải:

GTNN:

\(A=x^2-4x+1\)

\(\Leftrightarrow A=x^2-4x+4-3\)

\(\Leftrightarrow A=\left(x^2-4x+4\right)-3\)

\(\Leftrightarrow A=\left(x-2\right)^2-3\ge-3;\forall x\)

\(\Leftrightarrow A_{Min}=-3\)

\("="\Leftrightarrow x-2=0\Leftrightarrow x=2\)

Vậy ...

GTLN:

\(D=5-8x-x^2\)

\(\Leftrightarrow D=21-16-8x-x^2\)

\(\Leftrightarrow D=21-\left(16+8x+x^2\right)\)

\(\Leftrightarrow D=21-\left(4+x\right)^2\le21;\forall x\)

\(\Leftrightarrow D_{Max}=21\)

\("="\Leftrightarrow4+x=0\Leftrightarrow x=-4\)

Vậy ...

21 tháng 5 2020

amin là gì vậy

 

12 tháng 7 2018

a) \(A= 2x^2- 3x +1\)

\(=2\left(x^2-\dfrac{3}{2}x+\dfrac{1}{2}\right)\)

\(=2\left(x^2-2\cdot x\cdot\dfrac{3}{4}+\dfrac{9}{16}-\dfrac{1}{16}\right)\)

\(=2\left(x-\dfrac{3}{4}\right)^2-\dfrac{1}{8}\ge-\dfrac{1}{8}\)

Vậy Amin = \(-\dfrac{1}{8}\) khi \(x=\dfrac{3}{4}\)

b) \(B= 4x^2 +7x + 13\)

\(=\left(2x\right)^2+2\cdot2x\cdot\dfrac{7}{4}+\dfrac{49}{16}+\dfrac{159}{16}\)

\(=\left(2x+\dfrac{7}{4}\right)^2+\dfrac{159}{16}\ge\dfrac{159}{16}\)

Vậy Bmin = \(\dfrac{159}{16}\) khi \(x=-\dfrac{7}{8}\)

c) \(C= 5-8x+x^2\)

\(=x^2-2\cdot x\cdot4+16+9\)

\(=\left(x-4\right)^2+9\ge9\)

Vậy Cmin = 9 khi x = 4

d) \(D = (x-1)(x+2)(x+3)(x+6)\)

\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)

\(=\left(x^2+5x\right)^2-36\ge-36\)

Vậy Dmin = - 36 khi \(\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)

18 tháng 12 2018

\(x^2+y^2-xy-2x-2y+9=x^2+y^2+2xy-2x-2y+9-3xy\)

\(=\left(x+y\right)^2-2\left(x+y\right)+9-3xy=\left(x+y-2\right)\left(x+y\right)+9-3xy.\)

\(đếnđâytịt\)

c, =3 dễ

\(\frac{3x^2-6x+9}{x^2-2x+3}=\frac{3\left(x^2-2x+3\right)}{x^2-2x+3}=3\)

18 tháng 12 2018

Câu b bạn không làm à? Làm hộ mình với! Còn câu a thì còn -3xy thì?