\(a\sqrt{b}+\sqrt{ab}+\sqrt{a}+1\)(a≥0, b≥0) được phân tích thành nhân tử là
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2023

\(a\sqrt{b}+\sqrt{ab}+\sqrt{a}+1\)

\(=\sqrt{ab}\cdot\sqrt{a}+\sqrt{ab}+\sqrt{a}+1\)

\(=\left(\sqrt{ab}\cdot\sqrt{a}+\sqrt{ab}\right)+\left(\sqrt{a}+1\right)\)

\(=\sqrt{ab}\cdot\left(\sqrt{a}+1\right)+\left(\sqrt{a}+1\right)\)

\(=\left(\sqrt{ab}+1\right)\left(\sqrt{a}+1\right)\)

30 tháng 10 2023

a√b + √(ab) + √a + 1

= [a√b + √(ab)] + (√a + 1)

= √(ab)(√a + 1) + (√a + 1)

= (√a + 1)[√(ab) + 1]

4 tháng 10 2020

a) \(\sqrt{a^3}-\sqrt{b^3}+\sqrt{a^2b}-\sqrt{ab^2}\)

\(=a\sqrt{a}-b\sqrt{b}+a\sqrt{b}-b\sqrt{a}\)

\(=\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)-\left(\sqrt{a}-\sqrt{b}\right)\sqrt{ab}\)

\(=\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b-\sqrt{ab}\right)\)

\(=\left(\sqrt{a}-\sqrt{b}\right)\left(a+b\right)\)

4 tháng 10 2020

b) \(x-y+\sqrt{xy^2}-\sqrt{y^3}\)

\(=\left(x-y\right)+\left(y\sqrt{x}-y\sqrt{y}\right)\)

\(=\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)+y\left(\sqrt{x}-\sqrt{y}\right)\)

\(=\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}+y\right)\)

14 tháng 8 2019

\(\sqrt{ab}-\sqrt{a}-\sqrt{b}+1\)

\(=\sqrt{a}\left(\sqrt{b}-1\right)-\left(\sqrt{b}-1\right)\)

\(=\left(\sqrt{a}-1\right)\left(\sqrt{b}-1\right)\)

14 tháng 8 2019

\(\sqrt{ab}-\sqrt{a}-\sqrt{b}+1=\sqrt{a}\left(\sqrt{b}-1\right)-\left(\sqrt{b}-1\right)=\left(\sqrt{a}-1\right)\left(\sqrt{b}-1\right)\)

\(=\sqrt{a}\left(\sqrt{a}+1\right)+2\sqrt{b}\left(\sqrt{a}+1\right)=\left(\sqrt{a}+1\right)\left(\sqrt{a}+2\sqrt{b}\right)\)

a, \(7\sqrt{AB}+7B-\sqrt{A}-\sqrt{B}=7\sqrt{B}\left(\sqrt{A}+\sqrt{B}\right)-\left(\sqrt{A}+\sqrt{B}\right)\)\(=\left(\sqrt{A}+\sqrt{B}\right)\left(7\sqrt{B}-1\right)\)

b, \(a\sqrt{b}-b\sqrt{a}+\sqrt{a}-\sqrt{b}=\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)+\left(\sqrt{a}-\sqrt{b}\right)\)

\(=\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{ab}+1\right)\)

c,\(\sqrt{x^2-25y^2}-\sqrt{x-5y}=\sqrt{x-5y}.\sqrt{x+5y}-\sqrt{x-5y}\)

\(=\sqrt{x-5y}\left(\sqrt{x+5y}-1\right)\)

29 tháng 6 2019

\(a,7\sqrt{AB}+7B-\sqrt{A}-\sqrt{B}\)(  Với A>= 0,  B>=0)

\(=\left(7\sqrt{AB}-\sqrt{A}\right)+\left(7B-\sqrt{B}\right)\)

\(=7\sqrt{A}\left(\sqrt{B}-1\right)+7\sqrt{B}\left(\sqrt{B}-1\right)\)

\(=\left(\sqrt{B}-1\right)\left(7\sqrt{A}+7\sqrt{B}\right)\)

\(=7\left(\sqrt{B}-1\right)\left(\sqrt{A}+\sqrt{B}\right)\)

29 tháng 6 2019

\(b,a\sqrt{b}-b\sqrt{a}+\sqrt{a}-\sqrt{b}\)Với a>= 0,  b>=0)

\(=\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)+\left(\sqrt{a}-\sqrt{b}\right)\)

\(=\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{ab}+1\right)\)

\(c,\sqrt{x^2-25y^2}-\sqrt{x-5y}\)

\(=\sqrt{\left(x-5y\right)\left(x+5y\right)}-\sqrt{x-5y}\)

\(=\sqrt{x-5y}.\sqrt{x+5y}-\sqrt{x-5y}\)

\(=\sqrt{x-5y}\left(\sqrt{x+5y}-1\right)\)

29 tháng 6 2019

\(a,\)\(7\sqrt{ab}+7b-\sqrt{a}-\sqrt{b}\)

\(=7\sqrt{b}\left(\sqrt{a}+\sqrt{b}\right)-\left(\sqrt{a}+\sqrt{b}\right)\)

\(=\left(\sqrt{a}+\sqrt{b}\right)\left(7\sqrt{b}-1\right)\)

\(b,a\sqrt{b}-b\sqrt{a}+\sqrt{a}-\sqrt{b}\)

\(=\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)+\left(\sqrt{a}-\sqrt{b}\right)\)

\(=\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{ab}-1\right)\)

\(c,\sqrt{x^2-25y^2}-\sqrt{x-5y}\)

\(=\sqrt{\left(x-5y\right)\left(x+5y\right)}-\sqrt{x-5y}\)

\(=\sqrt{x-5y}\left(\sqrt{x-5y}-1\right)\)

22 tháng 6 2019

\(ab+b\sqrt{a}+\sqrt{a}+1\)

(đk: \(a\ge0\))

\(=b\sqrt{a}\left(\sqrt{a}+1\right)+\sqrt{a}+1=\left(\sqrt{a}+1\right)\left(b\sqrt{a}+1\right)\)

22 tháng 6 2019

ĐK: \(x,y\ge0\)

\(\sqrt{x^3}-\sqrt{y^3}+\sqrt{x^2y}-\sqrt{xy^2}=x\left(\sqrt{x}+\sqrt{y}\right)-y\left(\sqrt{x}+\sqrt{y}\right)=\left(\sqrt{x}+\sqrt{y}\right)\left(x-y\right)\)

\(=\left(\sqrt{x}+\sqrt{y}\right)^2\left(\sqrt{x}-\sqrt{y}\right)\)

7 tháng 10 2021

a) \(3a-2\sqrt{ab}-b=3a-3\sqrt{ab}+\sqrt{ab}-b\)

\(=3\sqrt{a}\left(\sqrt{a}-\sqrt{b}\right)+\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)=\left(3\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)\)

b) \(5a+3\sqrt{ab}-8b=5a-5\sqrt{ab}+8\sqrt{ab}-8b\)

\(=5\sqrt{a}\left(\sqrt{a}-\sqrt{b}\right)+8\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)\)

\(=\left(5\sqrt{a}+8\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)\)

7 tháng 10 2021

a) (\(\sqrt{a}-\sqrt{b}\))(3\(\sqrt{a}+b\))

b) \(\left(\sqrt{a}-\sqrt{b}\right)\left(5\sqrt{a}+8\sqrt{b}\right)\)