Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x+y\right)^3-x^3y^3=\left(x+y\right)^3-\left(xy\right)^3\)
=\(\left(x+y+xy\right)\left[\left(x+y\right)^2-xy\left(x+y\right)+x^2+y^2\right]\)
a, 11n+2+122n+1
= 11n.121+12.122n
= 11n.(133-12)+12.122n
= 11n.133-11nn .12+12.122n
=12.(144n-11n)+11n. 133
Có 144nn-11n \(⋮\)144-11=133
11n.133\(⋮\)133
=> dpcm
a) Với \(n\in N\Rightarrow2^{4n}-1=16^n-1=\left(16-1\right).\left(16^{n-1}+16^{n-2}+...+1\right)\)
\(=15.\left(16^{n-1}+16^{n-2}+...+1\right)⋮15\)
b) Với \(n\in N\Rightarrow16^n-15n-1=\left(16^n-1\right)-15n\)
mà \(\left(16^n-1\right)⋮15\left(cma\right);15n⋮15\)
\(\Rightarrow16^n-15n-1⋮15\)
Ta có: A = 20n + 16n - 3n - 1
Do n chẵn => n = 2k
Khi đó: A = 202k + 162k - 32k - 1
A = (202k - 1) + (256k - 9k)
Do 202k - 1 \(⋮\)(20 - 1) = 19
256k - 9k \(⋮\)(256 - 9) = 247 \(⋮\)19
=> A \(⋮\)19 (1)
Mặt khác, ta lại có:
A = 202k + 162k - 32k - 1 = (202k - 32k) + (256k - 1)
Do 202k - 32k \(⋮\)(20 - 3) = 17
256k - 1 \(⋮\)(256 - 1)= 255 \(⋮\)17
=> A \(⋮\)17 (2)
Mà (17; 19) = 1 => A \(⋮\)17.19 = 323 (đpcm)
Vì n chẵn
Đặt n = 2k (k \(\inℕ\))
Khi đó A = 20n + 16n - 3n - 1
= 202k + 162k - 32k - 1
= 400k + 256k - 9k - 1
= (400k - 1) + (256k - 9k)
= (400 - 1)(400k - 1 + 400k - 2 + ... + 1) + (256 - 9)(256k - 1 + 256k - 2.9 + ... + 9k - 1)
= 399(400k - 1 + 400k - 2 + ... + 1) + 247(256k - 1 + 256k - 2.9 + ... + 9k - 1)
= 19.21.(400k - 1 + 400k - 2 + ... + 1) + 19.13(256k - 1 + 256k - 2.9 + ... + 9k - 1)
= 19.(21.(400k - 1 + 400k - 2 + ... + 1) + 13(256k - 1 + 256k - 2.9 + ... + 9k - 1)) \(⋮\)19 (1)
Lại có A = 400k + 256k - 9k - 1
= (400k - 9k) + (256k - 1)
= (400 - 9)(400k - 1 + 400k - 2.9 + .... + 9k - 1) + (256 - 1)(256k - 1 + 256k - 2 + .... + 1)
= 391(400k - 1 + 400k - 2.9 + .... + 9k - 1) + 255(256k - 1 + 256k - 2 + .... + 1)
= 17.23(400k - 1 + 400k - 2.9 + .... + 9k - 1) + 17.15(256k - 1 + 256k - 2 + .... + 1)
= 17.(23(400k - 1 + 400k - 2.9 + .... + 9k - 1) + 15(256k - 1 + 256k - 2 + .... + 1)) \(⋮\)17 (2)
Lại có ƯCLN(17;19) = 1 (3)
Từ (1)(2)(3) => A \(⋮17.19=323\)(ĐPCM)
\(55^{n+1}-55^n\)
\(=55^n.55-55^n.1\)
\(=55^n.\left(55-1\right)\)
\(=55^n.54\)
Vì có 54 trong tích
=> 55n . 54 chia hết cho 54
=> Điều phải chứng minh
b) Phân tích ra thừa số : 5040 = 24 . 32 . 5 . 7
Phân tích : A = n . [ n2 . ( n2 - 7 )2 - 36 ] = n . [ ( n3 - 7n )2 - 62 ]
= n . ( n3 - 7n - 6 ) . ( n3 - 7n + 6 )
Ta lại có : n3 - 7n - 6 = ( n + 1 ) ( n + 2 ) ( n - 3 )
n3 - 7n + 6 = ( n - 1 ) ( n - 2 ) ( n + 3 )
Do đó : A = ( n - 3 ) ( n - 2 ) ( n - 1 ) n ( n + 1 ) ( n + 2 ) ( n + 3 )
Ta thấy A là tích của 7 số nguyên liên tiếp nên :
- tồn tại 1 bội số của 5 ( nên A chia hết cho 5 )
- tồn tại 1 bội số của 7 ( nên A chia hết cho 7 )
- tồn tại 2 bội số của 3 ( nên A chia hết cho 9 )
- tồn tại 3 bội số của 2, trong đó có 1 bội số của 4 ( nên A chia hết cho 16 )
A chia hết cho các số 5,7,9,16 đôi một nguyên tố cùng nhau nên A chia hết cho 5.7.9.16 = 5040
Ta có: \(14^{n+1}-14^n=14^n\cdot14-14^n\)
\(=14^n\left(14-1\right)\)
\(=14^n\cdot13⋮13\forall n\in N\)
Vậy: \(14^{n+1}-14^n⋮13\forall n\in N\)
14n+1-14n
=14n*14-14n
=14n(14-1)
=14n*13
Vì 14n*13 ⋮ 13 với mọi n∈N
Nên: 14n+1-14n chia hết cho 13 với mọi n∈N.