K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2021

Giải

Ta có: \(101^2-1=\left(101-1\right)\left(101+1\right)\)(Áp dụng hằng đẳng thức: \(A^2-B^2=\left(A-B\right)\left(A+B\right)\), ở đây, 1 cũng chính là 1 mũ 2)

\(=100.102\)

\(=10200\)

Vậy biểu thức \(101^2-1=10200\)

29 tháng 6 2017

Biến đổi các biểu thức hữu tỉ. Giá trị của phân thức

12 tháng 12 2017

điều kiện của x để gtrị của biểu thức đc xác định

=>\(2x+10\ne0;x\ne0:2x\left(x+5\right)\ne0\)

\(2x+5\ne0;x\ne0\)

=>\(x\ne-5;x\ne0\)

vậy đkxđ là \(x\ne-5;x\ne0\)

rút gon giống với bạn nguyen thuy hoa đến \(\dfrac{x-1}{2}\)

b,để bt =1=>\(\dfrac{x-1}{2}=1\)

=>x-1=2

=>x=3 thỏa mãn đkxđ

c,d giống như trên

11 tháng 10 2017

\(1^2-2^2+3^2-4^2+.................+99^2-100^2+101^2\)

\(=\left(-3\right)+\left(-7\right)+\left(-11\right)+........+\left(-199\right)+10201\)

\(=\frac{50.\left[\left(-199\right)+\left(-3\right)\right]}{2}+10201\)

\(=\left(-5050\right)+10201\)

\(=5151\)

\(1^2-2^2+3^2-4^2+...+99^2-100^2+101^2\)

\(=\left(-3\right)+\left(-7\right)+\left(-11\right)+...+-199+101^2\)

\(=\frac{50\left(-199+\left(-3\right)\right)}{2}+10201\)

\(=-5050+10201\)

\(=5151\)

22 tháng 4 2017

Giải bài 43 trang 53 SGK Toán 8 Tập 2 | Giải toán lớp 8

18 tháng 12 2017

\(\frac{x^2+2x}{2x+10}+\frac{x-5}{x}+\frac{50-5x}{2x\left(x+5\right)}=\frac{x^2+2x}{2\left(x+5\right)}+\frac{x-5}{x}+\frac{50-5x}{2x\left(x+5\right)}=\)

\(=\frac{x\left(x^2+2x\right)+2\left(x+5\right)\left(x-5\right)+50-5x}{2x\left(x+5\right)}=\frac{x^3+2x^2+2x^2-50+50-5x}{2x\left(x+5\right)}=\frac{x^3+4x^2-5x}{2x\left(x+5\right)}=\)

\(=\frac{x\left(x^2+4x-5\right)}{2x\left(x+5\right)}=\frac{x\left(x^2+4x-5\right)}{2x\left(x+5\right)}=\frac{x\left(x^2-1+4\left(x-1\right)\right)}{2x\left(x+5\right)}=\frac{x\left(x-1\right)\left(x+5\right)}{2x\left(x+5\right)}\)

a/ Để biểu thức xác đinh => 2x(x+5) khác 0 => x khác 0 và x khác -5

b/ Gọi biểu thức là A. Rút gọn A ta được: 

\(A=\frac{x\left(x-1\right)\left(x+5\right)}{2x\left(x+5\right)}=\frac{x-1}{2}\left(x\ne0;x\ne-5\right)\)

A=1 => x-1=2 => x=3

c/ A=-1/2 <=> x-1=-1 => x=0

d/ A=-3 <=> x-1=-6  => x=-5

Bài 1:

a) x2x≠2

Bài 2:

a) x0;x5x≠0;x≠5

b) x210x+25x25x=(x5)2x(x5)=x5xx2−10x+25x2−5x=(x−5)2x(x−5)=x−5x

c) Để phân thức có giá trị nguyên thì x5xx−5x phải có giá trị nguyên.

=> x=5x=−5

Bài 3:

a) (x+12x2+3x21x+32x+2)(4x245)(x+12x−2+3x2−1−x+32x+2)⋅(4x2−45)

=(x+12(x1)+3(x1)(x+1)x+32(x+1))2(2x22)5=(x+12(x−1)+3(x−1)(x+1)−x+32(x+1))⋅2(2x2−2)5

=(x+1)2+6(x1)(x+3)2(x1)(x+1)22(x21)5=(x+1)2+6−(x−1)(x+3)2(x−1)(x+1)⋅2⋅2(x2−1)5

=(x+1)2+6(x2+3xx3)(x1)(x+1)2(x1)(x+1)5=(x+1)2+6−(x2+3x−x−3)(x−1)(x+1)⋅2(x−1)(x+1)5

=[(x+1)2+6(x2+2x3)]25=[(x+1)2+6−(x2+2x−3)]⋅25

=[(x+1)2+6x22x+3]25=[(x+1)2+6−x2−2x+3]⋅25

=[(x+1)2+9x22x]25=[(x+1)2+9−x2−2x]⋅25

=2(x+1)25+18525x245x=2(x+1)25+185−25x2−45x

=2(x2+2x+1)5+18525x245x=2(x2+2x+1)5+185−25x2−45x

=2x2+4x+25+18525x245x=2x2+4x+25+185−25x2−45x

=2x2+4x+2+18525x245x=2x2+4x+2+185−25x2−45x

=2x2+4x+20525x245x=2x2+4x+205−25x2−45x

c) tự làm, đkxđ: x1;x1

19 tháng 12 2019

ê k bn với mk ik

😘 😘 😘 😘

27 tháng 3 2018

a, \(\frac{2x-1}{3}+1=\frac{2x-1}{3}-11\)

<=> \(\frac{2x-1}{3}+1-\frac{2x-1}{3}+11=0\)

<=> \(\frac{2x-1-2x-1}{3}+12=0\)

<=> \(\frac{0x-2+36}{3}=0\)

<=> \(0x-2=0\) (Vô lý) => pt vô nghiệm

b, \(\frac{3-2x}{5}\ge0\) <=> \(3-2x\ge0\)

<=> \(x\le\frac{3}{2}\)

2 tháng 5 2017

 ĐKXĐ của phương trình : \(\orbr{\begin{cases}x\ne-\frac{1}{3}\\x\ne-3\end{cases}}\)

\(\frac{3a-1}{3a+1}+\frac{a-3}{a+3}=2\) 

\(\Leftrightarrow\left(3a-1\right)\left(a+3\right)+\left(a-3\right)\left(3a+1\right)=2\left(3a+1\right)\left(a+3\right)\)\(\Leftrightarrow3a^2+8a-3+3a^2-8a-3=2\left(3a^2+10a+3\right)\)

\(\Leftrightarrow6a^2-6-6a^2-20a-6=0\)

\(\Leftrightarrow-20a-12=0\Leftrightarrow a=\frac{-12}{20}=-\frac{3}{5}\)(NHẬN)

vậy tập nghiệm của phương trình là : S = { -3/5 } 

Tk mk nka !!! Th@nks !!

11 tháng 4 2018
a,(3x-2):4>=(3x+3):6 <=>(18x-12):24>=(12x+12):24 <=>18x-12>=12x+12 <=>6x>=24 <=> 6x:6>=24:6 <=> X>=4 Vậy tập n là {x/x>=4}
5 tháng 6 2020

a) Để giá trị biểu thức 5 – 2x là số dương

<=> 5 – 2x > 0

<=> -2x > -5 ( Chuyển vế và đổi dấu hạng tử 5 )

\(\Leftrightarrow x< \frac{5}{2}\)( Chia cả 2 vế cho -2 < 0 ; BPT đổi chiều )

Vậy : \(x< \frac{5}{2}\)

b) Để giá trị của biểu thức x + 3 nhỏ hơn giá trị biểu thức 4x - 5 thì:

x + 3 < 4x – 5

<=< x – 4x < -3 – 5 ( chuyển vế và đổi dấu các hạng tử 4x và 3 )

<=> -3x < -8

\(\Leftrightarrow x>\frac{8}{3}\)( Chia cả hai vế cho -3 < 0, BPT đổi chiều).

Vậy : \(x>\frac{8}{3}\)

c) Để giá trị của biểu thức 2x +1 không nhỏ hơn giá trị của biểu thức x + 3 thì:

2x + 1 ≥ x + 3

<=> 2x – x ≥ 3 – 1 (chuyển vế và đổi dấu các hạng tử 1 và x).

<=> x ≥ 2.

Vậy x ≥ 2.

d) Để giá trị của biểu thức x2 + 1 không lớn hơn giá trị của biểu thức (x - 2)2 thì:

x2 + 1 ≤ (x – 2)2

<=> x2 + 1 ≤ x2 – 4x + 4

<=> x2 – x2 + 4x ≤ 4 – 1 ( chuyển vế và đổi dấu hạng tử 1; x2 và – 4x).

<=> 4x ≤ 3

 \(\Leftrightarrow x\le\frac{3}{4}\)( Chia cả 2 vế cho 4 > 0 )

Vậy : \(x\le\frac{3}{4}\)