Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trả lời :
Ta có :
\(x^2+2xy+7x+7y+y^2+10\)
\(=\left(x^2+2xy+y^2\right)+\left(7x+7y\right)+10\)
\(=\left(x+y\right)^2+7\left(x+y\right)+10\)
\(=\left(x+y\right)\left(x+y+2\right)+5\left(x+y+2\right)\)
\(=\left(x+y+2\right)\left(x+y+5\right)\)
Hok tốt
a) \(x^2+2xy+7x+7y+y^2+10\)
\(=\left(x^2+2xy+y^2\right)+\left(7x+7y\right)+10\)
\(=\left(x+y\right)^2+7\left(x+y\right)+10\)
\(=\left(x+y\right)^2+2\left(x+y\right)+5\left(x+y\right)+10\)
\(=\left(x+y+2\right)\left(x+y+5\right).\)
b) \(x^2y+xy^2+x+y=2010\)
\(\Leftrightarrow xy\left(x+y\right)+\left(x+y\right)=2010\)
\(\Leftrightarrow11\left(x+y\right)+1\left(x+y\right)=2010\)
\(\Leftrightarrow12\left(x+y\right)=2010\)
\(\Leftrightarrow x+y=\frac{335}{2}\)
\(\Leftrightarrow\left(x+y\right)^2=\frac{112225}{4}\)
\(\Leftrightarrow x^2+2xy+y^2=\frac{112225}{4}\)
\(\Leftrightarrow x^2+y^2+22=\frac{112225}{4}\)
\(\Leftrightarrow x^2+y^2=\frac{112137}{4}.\)
Vậy \(x^2+y^2=\frac{112137}{4}.\)
a,\(x^2+2xy+7x+7y+y^2+10=\left(x^2+2xy+y^2\right)+7\left(x+y\right)+10\)
\(=\left(x+y\right)^2+2\left(x+y\right)+5\left(x+y\right)+10\)
\(=\left(x+y\right)\left(x+y+2\right)+5\left(x+y+2\right)\)
\(=\left(x+y+2\right)\left(x+y+5\right)\)
b,\(x^2y+xy^2+x+y=2010\Rightarrow xy\left(x+y\right)+x+y=2010\)
\(\Rightarrow12\left(x+y\right)=2010\Rightarrow x+y=167,5\)
Ta có:\(x^2+y^2=x^2+2xy+y^2-2xy=\left(x+y\right)^2-2xy=\left(167,5\right)^2-2.11=28034,25\)
\(x^2y+xy^2+x+y=2018\)
\(\Leftrightarrow xy\left(x+y\right)+\left(x+y\right)=2018\)
\(\Leftrightarrow\left(xy+1\right)\left(x+y\right)=2018\Leftrightarrow12\left(x+y\right)=2018\)
\(\Leftrightarrow x+y=\frac{1009}{6}\)
\(x^2+y^2=\left(x+y\right)^2-2xy=\left(\frac{1009}{6}\right)^2-2.11=...\)
a, mình nghĩ đề là cm đẳng thức nhé
\(VT=\left(5x^4-3x^3+x^2\right):3x^2=\frac{5x^4}{3x^2}-\frac{3x^3}{3x^2}+\frac{x^2}{3x^2}=\frac{5}{3}x^2-x+\frac{1}{3}=VP\)
Vậy ta có đpcm
b, \(VT=\left(5xy^2+9xy-x^2y^2\right):\left(-xy\right)=\frac{5xy^2}{-xy}+\frac{9xy}{-xy}-\frac{x^2y^2}{-xy}\)
\(=-5y-9+xy=VP\)
Vậy ta có đpcm
c, \(VT=\left(x^3y^3-x^2y^3-x^3y^2\right):x^2y^2=\frac{x^3y^3}{x^2y^2}-\frac{x^2y^3}{x^2y^2}-\frac{x^3y^2}{x^2y^2}=xy-y-x=VP\)
Vậy ta có đpcm
a) đề sai thì phải
b) 2x2 - 2xy - 7x + 7y = (2x2 - 2xy) - (7x - 7y) = 2x(x - y) - 7(x - y) = (x - y)(2x - 7)
c) x2 - 3x + xy - 3y = (x2 + xy) - (3x + 3y) = x(x + y) - 3(x + y) = (x + y)(x - 3)
đ) x2 - xy + x - y = (x2 - xy) + (x - y) = x(x - y) + (x - y) = (x - y)(x + 1)
Phối hợp các phương pháp
a) x2 - 2xy + y2 - xy + y2 = (x2 - 2xy + y2) - (xy - y2) = (x - y)2 - y(x - y) = (x - y)(x - y - y) = (x - y)(x - 2y)
vip
vip
vip
chúc bạn học ngu
\(x^2y+xy^2+x+y=2016\Leftrightarrow\left(x+y\right)\left(xy+1\right)=2016\)
\(\Leftrightarrow42\left(x+y\right)=2016\Leftrightarrow x+y=48\)
\(\Leftrightarrow\left(x+y\right)^2=2304\Leftrightarrow x^2+y^2+2xy=2304\)
Do đó: \(A=x^2+y^2-5xy=x^2+y^2+2xy-7xy=2304-7.41=2017\)