Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 3x+2(x-5)=-x+2
<=> 3x+2x+x=2+10
<=>6x=12
<=>x=2
b) 3x2-2x=0
<=>x(3x-2)=0
<=>\(\left[{}\begin{matrix}x=0\\3x-2=0\end{matrix}\right.\)
<=>\(\left[{}\begin{matrix}x=0\\x=\dfrac{2}{3}\end{matrix}\right.\)
c) \(\dfrac{2x}{3}\)+\(\dfrac{x-4}{6}\)=2-\(\dfrac{x}{2}\)
<=>\(\dfrac{8x+2x-8}{12}\)=\(\dfrac{24-6x}{12}\)
<=> 8x+2x-8=24-6x
<=>8x+2x+6x=24+8
<=>16x=32
<=>x=2
d) \(\dfrac{x-2}{x+2}\)-\(\dfrac{3}{x-2}\)= -\(\dfrac{2\left(x-11\right)}{4-x^2}\) ( ĐKXĐ: x\(\ne\)\(\pm\)2)
<=> \(\dfrac{\left(x-2\right)^2-3\left(x+2\right)}{x^2-4}\)=\(\dfrac{2\left(x-11\right)}{x^2-4}\)
=> (x-2)2-3(x+2)=2(x-11)
<=> x2-4x+4-3x-6=2x-22
<=> x2-4x-3x-2x=-22-4+6
<=> x-9x+20=0
<=> (x-4)(x-5)=0
<=>\(\left[{}\begin{matrix}x=4\\x=5\end{matrix}\right.\) ( thỏa mãn diều kiện )
d) (x2+1)(x2-4x+4)=0
=> x2-4x+4=0 (x2+1\(\ge\)1 với mọi x)
=>(x-2)2 =0
=>x=2
a)Ta có : \(\dfrac{x+1}{1-x}\)( giữ nguyên )
\(\dfrac{x^2-2}{1-x}\)( giữ nguyên )
\(\dfrac{2x^2-x}{x-1}=\dfrac{x-2x^2}{1-x}\)
b)Ta có : \(\dfrac{1}{x-1}=\dfrac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x^2+x+1}{x^3-1}\)
\(\dfrac{2x}{x^2+x+1}=\dfrac{2x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{2x^2-2x}{x^3-1}\)
\(\dfrac{2x-3x^2}{x^3-1}\)(giữ nguyên )
c) MTC = ( x+ 2)2(x - 2)2
Do đó , ta có : \(\dfrac{1}{x^2+4x+4}=\dfrac{1}{\left(x+2\right)^2}=\dfrac{\left(x-2\right)^2}{\left(x+2\right)^2\left(x-2\right)^2}\)
\(\dfrac{1}{x^2-4x+4}=\dfrac{1}{\left(x-2\right)^2}=\dfrac{\left(x+2\right)^2}{\left(x-2\right)^2\left(x+2\right)^2}\)
\(\dfrac{x}{x^2-4}=\dfrac{x}{\left(x+2\right)\left(x-2\right)}=\dfrac{x\left(x^2-2^2\right)}{\left(x+2\right)^2\left(x-2\right)^2}=\dfrac{x^3-4x}{\left(x+2\right)^2\left(x-2\right)^2}\)
d) MTC = xyz( x - y)( y - z)( x - z)
Do đó , ta có : \(\dfrac{1}{x\left(x-y\right)\left(x-z\right)}=\dfrac{yz\left(y-z\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)
\(\dfrac{1}{y\left(y-x\right)\left(y-z\right)}=\dfrac{-xz\left(x-z\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)
\(\dfrac{1}{z\left(z-x\right)\left(z-y\right)}=\dfrac{xy\left(x-y\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)
Cộng các phân thức lại ta có :
\(\dfrac{yz\left(y-z\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)+\(\dfrac{-xz\left(x-z\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)+\(\dfrac{xy\left(x-y\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)
= \(\dfrac{yz\left(y-z\right)-xz\left(x-z\right)+xy\left(x-y\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)
a, Vì x2 ≥ 0 , 2y2 ≥ 0 với mọi x,y
=>x2+2y2+ 1 ≥ 1
=>Phân thức trên luôn có nghĩa
a: \(x^2-10x+26+y^2+2y=0\)
\(\Leftrightarrow x^2-10x+25+y^2+2y+1=0\)
\(\Leftrightarrow\left(x-5\right)^2+\left(y+1\right)^2=0\)
=>x=5 hoặc y=-1
b: \(x^2-6x+13+y^2+4y=0\)
\(\Leftrightarrow x^2-6x+9+y^2+4y+4=0\)
\(\Leftrightarrow\left(x-3\right)^2+\left(y+2\right)^2=0\)
=>x=3 và y=-2
a: \(A=2x-3-5x+2-3x+1=-6x=-6\cdot\dfrac{-2}{3}=4\)
b: \(B=x^{2n-2n+3}=x^3=\left(-3\right)^3=-27\)
a) \(x^3-\dfrac{1}{9}x=0\)
\(\Rightarrow x\left(x^2-\dfrac{1}{9}\right)=0\)
\(\Rightarrow x\left(x-\dfrac{1}{3}\right)\left(x+\dfrac{1}{3}\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x-\dfrac{1}{3}=0\Leftrightarrow x=\dfrac{1}{3}\\x+\dfrac{1}{3}=0\Leftrightarrow x=-\dfrac{1}{3}\end{matrix}\right.\)
b) \(x\left(x-3\right)+x-3=0\)
\(\Rightarrow\left(x-3\right)\left(x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-3=0\Rightarrow x=3\\x+1=0\Rightarrow x=-1\end{matrix}\right.\)
c) \(2x-2y-x^2+2xy-y^2=0\) (thêm đề)
\(\Rightarrow2\left(x-y\right)-\left(x-y\right)^2=0\)
\(\Rightarrow\left(x-y\right)\left(2-x+y\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}x-y=0\Rightarrow x=y\\2-x+y=0\Rightarrow x-y=2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=y\left(1\right)\\\left(1\right)\Rightarrow x-x=2\left(loại\right)\end{matrix}\right.\)
d) \(x^2\left(x-3\right)+27-9x=0\)
\(\Rightarrow x^2\left(x-3\right)+\left(x-3\right).9=0\)
\(\Rightarrow\left(x-3\right)\left(x^2+9\right)=0\)
\(\Rightarrow x-3=0\Rightarrow x=3.\)
Đề bài đúng chứ bạn
uk