Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1
a)
Để biểu thức A có nghĩa thì \(2x^2-3x+1\ge0\Leftrightarrow\left(x-1\right)\left(2x-1\right)\ge0\)
\(\Leftrightarrow x\ge1\)
b)
Để biểu thức B có nghĩa thì \(x-1\ge0;2x-1\ge0\Rightarrow x\ge1\)
c)
Với \(x\ge1\) thì biểu thức A luôn luôn bằng biểu thức B
d)
Vô lý vcl
Câu 2
Xài BĐT Bunhiacopski:
\(A^2=\left(2x+3y\right)^2=\left(2\cdot x+3\cdot y\right)^2\le13\left(x^2+y^2\right)=1521\)
\(\Rightarrow A\le39\)
Câu 1:
a) A=\(\sqrt{2x^2-3x+1}\)
ĐKXĐ: \(\orbr{\begin{cases}x\le\frac{1}{2}\\x\ge1\end{cases}}\)
b) B=\(\sqrt{x-1}\cdot\sqrt{2x-1}\)
ĐKXĐ:\(\orbr{\begin{cases}x\ge1\\x\ge\frac{1}{2}\end{cases}}\)
=>\(x\ge1\)
c) Với \(x\ge1\)thì A=B đc xác định
d) Với \(x\le\frac{1}{2}\)thì A có nghĩa,B không có nghĩa
Tìm giá trị lớn nhất: Áp dụng \(\left|a+b\right|\le\left|a\right|+\left|b\right|\)được: \(A\le\left|x\right|+\sqrt{2}+\left|y\right|+1=6+\sqrt{2}\)
Max A = \(6+\sqrt{2}\)khi chẳng hạn x=-2,y=-3
Tìm giá trị nhỏ nhất: Áp dụng \(\left|a-b\right|\ge\left|a\right|-\left|b\right|\)được: \(A\ge\left|x\right|-\sqrt{2}+\left|y\right|-1=4-\sqrt{2}\)
Min A=\(4-\sqrt{2}\)khi chẳng hạn x=2,y=3
Từ giả thiếu suy ra: (x2+y2)2-4(x2+y2)+3=-x2 =<0
Do đó: A2-4A+3 =<0
<=> (A-1)(A-3) =<0
<=> 1 =<A=<3
Vậy MinA=1 <=> x=0; y=\(\pm\)1
MaxA=3 <=> x=0; y=\(\pm\sqrt{3}\)
2. \(P=x^2-x\sqrt{3}+1=\left(x^2-x\sqrt{3}+\frac{3}{4}\right)+\frac{1}{4}=\left(x-\frac{\sqrt{3}}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)
Dấu '=' xảy ra khi \(x=\frac{\sqrt{3}}{2}\)
Vây \(P_{min}=\frac{1}{4}\)khi \(x=\frac{\sqrt{3}}{2}\)
3. \(Y=\frac{x}{\left(x+2011\right)^2}\le\frac{x}{4x.2011}=\frac{1}{8044}\)
Dấu '=' xảy ra khi \(x=2011\)
Vây \(Y_{max}=\frac{1}{8044}\)khi \(x=2011\)
4. \(Q=\frac{1}{x-\sqrt{x}+2}=\frac{1}{\left(x-\sqrt{x}+\frac{1}{4}\right)+\frac{7}{4}}=\frac{1}{\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{7}{4}}\le\frac{4}{7}\)
Dấu '=' xảy ra khi \(x=\frac{1}{4}\)
Vậy \(Q_{max}=\frac{4}{7}\)khi \(x=\frac{1}{4}\)
Ta có :
\(A=x^3y^3.\left(x^2+y^2\right)\)\(=\frac{1}{2}\cdot\left(xy\right)\cdot\left(xy\right)\cdot\left(2xy\right)\cdot\left(x^2+y^2\right)\)
Áp dụng BĐT : \(ab\le\left(\frac{a+b}{2}\right)^2\) ta được :
\(A=\frac{1}{2}\cdot\left(xy\right)\cdot\left(xy\right)\cdot\left(2xy\right)\cdot\left(x^2+y^2\right)\)
\(\le\frac{1}{2}\cdot\left(\frac{x+y}{2}\right)^2\cdot\left(\frac{x+y}{2}\right)^2\cdot\left(\frac{2xy+x^2+y^2}{2}\right)^2\)
\(=\frac{1}{2}\cdot\frac{\left(x+y\right)^4}{16}\cdot\frac{\left(x+y\right)^4}{4}=\frac{1}{2}\cdot\frac{1}{16}\cdot\frac{1}{4}=\frac{1}{128}\)
Nên : \(A\le\frac{1}{128}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)
Vậy Min \(A=\frac{1}{128}\) khi \(x=y=\frac{1}{2}\)