Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Đặt \(\left(\frac{xy}{z}; \frac{yz}{x}; \frac{xz}{y}\right)=(a,b,c)\)
\(\Rightarrow \left\{\begin{matrix} y^2=ab\\ x^2=ac\\ z^2=bc\end{matrix}\right.\)
Bài toán trở thành: Cho $a,b,c>0$ thỏa mãn \(ab+bc+ac=1\)
Tìm min $S=a+b+c$
Theo hệ quả quen thuộc của BĐT Cauchy: \((a+b+c)^2\geq 3(ab+bc+ac)\)
\(\Rightarrow S=\sqrt{(a+b+c)^2}\geq \sqrt{3(ab+bc+ac)}=\sqrt{3}\)
Vậy \(S_{\min}=\sqrt{3}\Leftrightarrow a=b=c=\frac{1}{3}\Leftrightarrow x=y=z=\frac{1}{\sqrt{3}}\)
Lời giải:
Đặt \(\left(\frac{xy}{z}; \frac{yz}{x}; \frac{xz}{y}\right)=(a,b,c)\)
\(\Rightarrow \left\{\begin{matrix} y^2=ab\\ x^2=ac\\ z^2=bc\end{matrix}\right.\)
Bài toán trở thành: Cho $a,b,c>0$ thỏa mãn \(ab+bc+ac=1\)
Tìm min $S=a+b+c$
Theo hệ quả quen thuộc của BĐT Cauchy: \((a+b+c)^2\geq 3(ab+bc+ac)\)
\(\Rightarrow S=\sqrt{(a+b+c)^2}\geq \sqrt{3(ab+bc+ac)}=\sqrt{3}\)
Vậy \(S_{\min}=\sqrt{3}\Leftrightarrow a=b=c=\frac{1}{3}\Leftrightarrow x=y=z=\frac{1}{\sqrt{3}}\)
a) \(\sqrt{x}=x^2\)
\(\Leftrightarrow\sqrt{x}=\sqrt{x^4}\)
=> x = x4
=> x4 - x = 0
=> x.(x3 - 1) = 0
\(\Rightarrow\hept{\begin{cases}x=0\\x^3-1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\x=1\end{cases}}\)
a)
Vì \(\sqrt{x}=x^2\)
\(\Rightarrow x=1\)
b)
\(x^2+y=y^2+4\)
Vậy ta phải tìm y mà thêm lũy thừa vào thì y không thay đổi và tìm số x mà x2 = 4
\(2^2=4;1^2=1\)
\(\Rightarrow x=2;y=1\)
lớp 6 học căn rồi á
bạn học kinh nhỉ