Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu lấy \(\sqrt{3}\) bằng \(1,73\) thì vì \(1,73< \sqrt{3}=1,7320508...< 1,74\) nên ta có \(\left|\sqrt{3}-1,73\right|< \left|1,73-1,74\right|=0,01\)
Vậy sai số tuyệt đối trong trường hợp này không vượt quá \(0,001\)
Nếu lấy \(\sqrt{3}\) bằng \(1,7321\) thì sai số tuyệt đối không vượt quá 0,0001
– Làm tròn với hai chữ số thập phân: ∛5 = 1,71.
Sai số tuyệt đối: |1,71 – ∛5| < |1,71 – 1,7099| = 0,0001.
Vậy sai số tuyệt đối không vượt quá 0,0001.
– Làm tròn với ba chữ số thập phân: ∛5 = 1,710
Sai số tuyệt đối: |1,71 – ∛5| < |1,71 – 1,7099| = 0,0001.
Vậy sai số tuyệt đối không vượt quá 0,0001.
– Làm tròn với bốn chữ số thập phân: ∛5 = 1,7100
|1,71 – ∛5| < |1,71 – 1,7099| = 0,0001.
Vậy sai số tuyệt đối không vượt quá 0,0001.
Nếu 3 bằng 1,73 thì vì 1,73 < 3 = 1,7320508... < 1,74 nên ta có
| 3 - 1 , 73 | < | 1 , 73 - 1 , 74 | = 0 , 01
a) Dạng chuẩn của số π với 10 chữ số chắc là 3,141592654 với sai số tuyệt đối ∆π≤ 10-9.
b) Viết π ≈ 3,14 ta mắc phải sai số tuyệt đối không quá 0,002. Trong cách viết này có 3 chữ số đáng tin.
Viết π ≈ 3,1416 ta mắc phải sai số tuyệt đối không quá 10-4. Viết như vậy thì số π này có 5 chữ số đáng tin.
phương trình (E) có dạng:
\(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1\)
Vì (E) đi qua điểm M nên
\(\dfrac{\dfrac{9}{5}}{a^2}+\dfrac{\dfrac{16}{5}}{b^2}=1\)
\(\dfrac{9}{a^2}+\dfrac{16}{b^2}=5\)(1)
Do tam giác \(MF_1F_2\)vuông tại M
Nên M thuộc đường tròn \(x^2+y^2=c^2\)
\(\dfrac{9}{5}+\dfrac{16}{5}=c^2\)
\(5=c^2\)
\(a^2-b^2=5\)
\(a^2=5+b^2\)
Thế vào pt(1)
\(9b^2+16a^2=5a^2b^2\)
\(9b^2+16\left(5+b^2\right)=5b^2\left(5+b^2\right)\)
\(5b^4-80=0\)
\(b^2=\pm4\)
\(\Rightarrow b^2=4\Rightarrow a^2=9\)
\(\left(E\right):\dfrac{x^2}{4}+\dfrac{y^2}{9}=1\)
\(\Rightarrow c=\sqrt{5};e=\dfrac{\sqrt{5}}{2}\)
≈ 1,71 với sai số mắc phải 0,01;
≈ 1,710 với sai số mắc phải 0,001;
≈ 1,7100 với sai số mắc phải 0,0001.