Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(y=sin2x+\left(\sqrt{3}+1\right)cos2x+sin^2x-cos^2x-1\)
\(=sin2x+\sqrt{3}cos2x-1=2sin\left(2x+\frac{\pi}{3}\right)-1\)
Do \(-1\le sin\left(2x+\frac{\pi}{3}\right)\le1\Rightarrow-3\le y\le1\)
b/ \(y=2sin^2x-2cos^2x-3sinx.cosx-1\)
\(=-2cos2x-\frac{3}{2}sin2x-1=-\frac{5}{2}\left(\frac{3}{5}sinx+\frac{4}{5}cosx\right)-1\)
\(=-\frac{5}{2}sin\left(x+a\right)-1\Rightarrow-\frac{7}{2}\le y\le\frac{3}{2}\)
c/ \(y=1-sin2x+2cos2x+\frac{3}{2}sin2x=\frac{1}{2}sin2x+2cos2x+1\)
\(=\frac{\sqrt{17}}{2}\left(\frac{1}{\sqrt{17}}sin2x+\frac{4}{\sqrt{17}}cos2x\right)+1=\frac{\sqrt{17}}{2}sin\left(2x+a\right)+1\)
\(\Rightarrow-\frac{\sqrt{17}}{2}+1\le y\le\frac{\sqrt{17}}{2}+1\)
\(\Leftrightarrow sin^3x+sinx+cosx-cos^3x=0\)
\(\Leftrightarrow sin^3x+sinx+cosx\left(1-cos^2x\right)=0\)
\(\Leftrightarrow sin^3x+sinx+cosx.sin^2x=0\)
\(\Leftrightarrow sinx\left(sin^2x+1+sinx.cosx\right)=0\)
\(\Leftrightarrow sinx\left[sin^2x+\frac{1}{2}+\frac{1}{2}\left(sinx+cosx\right)^2\right]=0\)
\(\Leftrightarrow sinx=0\Leftrightarrow x=k\pi\)
3.
Theo điều kiện của pt lượng giác bậc nhất:
\(m^2+\left(3m+1\right)^2\ge\left(1-2m\right)^2\)
\(\Leftrightarrow10m^2+6m+1\ge4m^2-4m+1\)
\(\Leftrightarrow3m^2+5m\ge0\Rightarrow\left[{}\begin{matrix}m\ge0\\m\le-\frac{5}{3}\end{matrix}\right.\)
4.
\(\Leftrightarrow1-sin^2x-\left(m^2-3\right)sinx+2m^2-3=0\)
\(\Leftrightarrow-sin^2x-m^2sinx+2m^2+3sinx-2=0\)
\(\Leftrightarrow\left(-sin^2x+3sinx-2\right)+m^2\left(2-sinx\right)=0\)
\(\Leftrightarrow\left(sinx-1\right)\left(2-sinx\right)+m^2\left(2-sinx\right)=0\)
\(\Leftrightarrow\left(2-sinx\right)\left(sinx-1+m^2\right)=0\)
\(\Leftrightarrow sinx=1-m^2\)
\(\Rightarrow-1\le1-m^2\le1\)
\(\Rightarrow m^2\le2\Rightarrow-\sqrt{2}\le m\le\sqrt{2}\)
1.
Bạn xem lại đề, \(sin^2x\left(\frac{x}{2}-\frac{\pi}{4}\right)\) là sao nhỉ?Có cả x trong lẫn ngoài ngoặc?
2.
ĐKXĐ: \(sinx\ne0\)
\(\left(2sinx-cosx\right)\left(1+cosx\right)=sin^2x\)
\(\Leftrightarrow\left(2sinx-cosx\right)\left(1+cosx\right)=1-cos^2x\)
\(\Leftrightarrow\left(2sinx-cosx\right)\left(1+cosx\right)-\left(1+cosx\right)\left(1-cosx\right)=0\)
\(\Leftrightarrow\left(1+cosx\right)\left(2sinx-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=-1\\sinx=\frac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\pi+k2\pi\\x=\frac{\pi}{6}+k2\pi\\x=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)
\(y=sinx.cosx\left(sin^2x-cos^2x\right)=\frac{1}{2}sin2x.\left(-cos2x\right)=-\frac{1}{4}sin4x\)
Do \(-1\le sin4x\le1\Rightarrow-\frac{1}{4}\le y\le\frac{1}{4}\)
\(y_{min}=-\frac{1}{4}\) khi \(sin4x=1\)
\(y_{max}=\frac{1}{4}\) khi \(sin4x=-1\)
2.1
a.
\(\Leftrightarrow sinx-cosx=\dfrac{\sqrt{2}}{2}\)
\(\Leftrightarrow\sqrt{2}sin\left(x-\dfrac{\pi}{4}\right)=\dfrac{\sqrt{2}}{2}\)
\(\Leftrightarrow sin\left(x-\dfrac{\pi}{4}\right)=\dfrac{1}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{\pi}{4}=\dfrac{\pi}{6}+k2\pi\\x-\dfrac{\pi}{4}=\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5\pi}{12}+k2\pi\\x=\dfrac{13\pi}{12}+k2\pi\end{matrix}\right.\)
b.
\(cosx-\sqrt{3}sinx=1\)
\(\Leftrightarrow\dfrac{1}{2}cosx-\dfrac{\sqrt{3}}{2}sinx=\dfrac{1}{2}\)
\(\Leftrightarrow cos\left(x+\dfrac{\pi}{3}\right)=\dfrac{1}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{\pi}{3}=\dfrac{\pi}{3}+k2\pi\\x+\dfrac{\pi}{3}=-\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=k2\pi\\x=-\dfrac{2\pi}{3}+k2\pi\end{matrix}\right.\)
Lời giải:
$m^2=(\sin x+\cos x)^2=\sin ^2x+\cos ^2x+2\sin x\cos x=1+2\sin x\cos x$
$\Rightarrow \sin x\cos x=\frac{m^2-1}{2}$
Ta có:
$|\sin ^3x-\cos ^3x|=|\sin x-\cos x||\sin ^2x+\sin x\cos x+\cos ^2x|$
$=\sqrt{(\sin x-\cos x)^2}|1+\sin x\cos x|$
$=\sqrt{1-2\sin x\cos x}.|1+\sin x\cos x|$
$=\sqrt{1-(m^2-1)}.|1+\frac{m^2-1}{2}|$
$=\sqrt{2-m^2}.\frac{m^2+1}{2}$
\(sinx+cosx=m\\ \Rightarrow sin^2x+cos^2x+2sinx.cosx=m^2\\ \Rightarrow sinx.cosx=\dfrac{1-m^2}{2}\)
Mặt khác:
\(sinx-cosx=\left(sinx+cosx\right)-2cosx=m-2cosx\)
Có:
\(\left|sin^3x-cos^3x\right|=\left|\left(sinx-cosx\right)\left(sin^2x+sinx.cosx+cos^2x\right)\right|\\ =\left|\left(m-2cosx\right)\left(1+\dfrac{1-m^2}{2}\right)\right|\\ =\left|\left(m-2cosx\right)\left(\dfrac{3-m^2}{2}\right)\right|\)