
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a: cos a=0.8
tan a=0,6/0,8=3/4
b: \(sina=\sqrt{1-0.7^2}=\dfrac{\sqrt{51}}{10}\)
\(tana=\dfrac{\sqrt{51}}{7}\)
c: \(1+tan^2a=\dfrac{1}{cos^2a}=1.64\)
\(\Leftrightarrow cos^2a=\dfrac{25}{41}\)
=>\(cosa=\dfrac{5}{\sqrt{41}}\)
=>\(sina=\sqrt{1-\dfrac{25}{41}}=\sqrt{\dfrac{16}{41}}\)

a, ta có \(\tan\alpha=\frac{\sin\alpha}{\cos\alpha}\)
\(\frac{1}{3}\)= \(\frac{\sin\alpha}{\cos\alpha}\)
\(\cos\alpha\)= 3 \(\sin\alpha\)
ta có \(\frac{\cos\alpha+\sin\alpha}{\cos\alpha-\sin\alpha}\)= \(\frac{3\sin\alpha+\sin\alpha}{3\sin\alpha-\sin\alpha}\)= \(\frac{4\sin\alpha}{2\sin\alpha}\)= \(2\)
#mã mã#

\(a,1-sin^2\alpha=cos^2\alpha\)
\(b,\left(1-cos\alpha\right)\left(1+cos\alpha\right)=1-cos^2\alpha=sin^2\alpha\)
\(c,1+sin^2\alpha+cos^2\alpha=1+1=2\)
\(d,sin\alpha-sin\alpha.cos^2\alpha=sin\alpha.\left(1-cos^2\alpha\right)=sin\alpha.sin^2\alpha=sin^3\alpha\)
\(e,sin^2\alpha+cos^2\alpha+2sin^2\alpha.cos^2\alpha\)
\(=1+2sin^2\alpha.cos^2\alpha\)

Lời giải:
a)
\(\cos ^2a+\cos ^2b+\cos ^2a\sin ^2b+\sin ^2a\)
\(=(\cos ^2a+\sin ^2a)+\cos ^2b+\cos ^2a\sin ^2b\)
\(=1+1-\sin ^2b+\cos ^2a\sin ^2b\)
\(=2-\sin ^2b(1-\cos ^2a)=2-\sin ^2b\sin ^2a\)
b)
\(2(\sin a-\cos a)^2-[(\sin a+\cos a)^2+\sin a\cos a]\)
\(=2(\sin ^2a-2\sin a\cos a+\cos ^2a)-[\sin ^2+2\sin a\cos a+\cos ^2a+\sin a\cos a]\)
\(=2(1-2\sin a\cos a)-(1+3\sin a\cos a)\)
\(=1-7\sin a\cos a\)
c)
\((\tan a-\cot a)^2-(\tan a+\cot a)^2\)
\(=\tan ^2a+\cot ^2a-2\tan a\cot a-(\tan ^2a+\cot ^2a+2\tan a\cot a)\)
\(=-4\tan a\cot a=-4\)

1.Cậu bấm máy tính
Có cosα=0,6 →α=cos-1(0,6)≃53,130.Từ đó ta có tanα=tan53,130≃1,33. cotα=1/tan53,130≃0,75. Tương tự các câu còn lại. 2.Dùng các CT lượng giác
Ta có \(sin\alpha+cos\alpha=1\)=>\(cos\alpha=1-sin\alpha=1-0,6=0,4\)
\(tan\alpha=\frac{sin\alpha}{cos\alpha}=\frac{0,6}{0,4}=1,5\)
vo minh khoa \(sin^2\alpha+cos^2\alpha=1\) nhé , chỉnh lại đi