Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Với m=1 hệ trở thành : \(\hept{\begin{cases}-x-3y=-5\left(1\right)\\x+y=3\left(2\right)\end{cases}}\)cộng 1 và 2 : \(\Rightarrow-2y=-2\Rightarrow y=1\)thay y vào 2 có : \(x=3-y=3-1=2\)vậy nghiệm phương trình là : \(\hept{\begin{cases}x=2\\y=1\end{cases}}\)
- \(\hept{\begin{cases}\left(m-2\right)x-3y=-5\left(3\right)\\x+my=3\left(4\right)\end{cases}}\) từ 4 có :\(x=3-my\)thế vào phương trình 3 đc :\(\left(m-2\right)\left(3-my\right)-3y=-5\)\(\Leftrightarrow3m-m^2y-6+2my-3y=-5\)\(\Leftrightarrow y\left(m^2-2m+3\right)=3m-1\Leftrightarrow y=\frac{3m-1}{m^2-2m+3}\)để phương trình có nghiệm thì \(m^2-2m+3\ne0\)thật vây \(m^2-2m+3=\left(m^2-2m+1\right)+2=\left(m-1\right)^2+2\ge2\forall m\)nên phương trinh có 1 nghiệm với mọi m => hệ phương trình có một nghiệm duy nhất với mợi m . Khi đó phương trình của hệ là: \(\hept{\begin{cases}y=\frac{3m-1}{m^2-2m+3}\\x=3-my\end{cases}}\Leftrightarrow\hept{\begin{cases}y=\frac{3m-1}{m^2-2m+3}\\x=3-\frac{\left(3m-1\right)m}{m^2-2m+3}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}y=\frac{3m-1}{m^2-2m+3}\\x=\frac{3m^2-6m+9-3m^2+m}{m^2-2m+3}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{9-5m}{m^2-2m+3}\\y=\frac{3m-1}{m^2-2m+3}\end{cases}}\)
Ta có
m x − y = 2 m + 1 2 x + m y = 1 − m ⇔ y = m x − 2 m − 1 2 x + m m x − 2 m − 1 = 1 − m
⇔ y = m x − 2 m − 1 2 x + m 2 x − 2 m 2 − m = 1 − m ⇔ m 2 + 2 x = 2 m 2 + 1 1 y = m x − 2 m − 1 2
Ta có m 2 + 2 > 0 ; ∀ m nên PT (1) có nghiệm duy nhất ∀ m
Hệ phương trình có nghiệm duy nhất ∀ m
Từ (1) ta có: x = 2 m 2 + 1 m 2 + 2 thay vào (2) ta có:
y = m . 2 m 2 + 1 m 2 + 2 − 2 m − 1 = − m 2 − 3 m − 2 m 2 + 2
Vậy x ; y = 2 m 2 + 1 m 2 + 2 ; − m 2 − 3 m − 2 m 2 + 2
Đáp án: D
a, tự làm
b,\(\hept{\begin{cases}x-my=0\\mx-y=m+1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=my\\m^2y-y=m+1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=my\\y\left(m^2-1\right)\left(1\right)\end{cases}}\)
để hpt có nghiệm duy nhất =>pt(1) có nghiệm duy nhất =>\(m^2-1\ne0\Rightarrow m\ne\pm1\)
c, \(\Rightarrow\hept{\begin{cases}x=my\\y=\frac{m+1}{m^2-1}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{m}{m-1}\\y=\frac{1}{m-1}\end{cases}}\)
để x>0,y>0 =>\(\hept{\begin{cases}\frac{m}{m-1}>0\\\frac{1}{m-1>0}\end{cases}}\Leftrightarrow\hept{\begin{cases}\orbr{\begin{cases}m< 0\\m>1\end{cases}}\\m>0\end{cases}}\Rightarrow m>0\)
d,để x+2y=1=>\(\frac{m}{m-1}+\frac{2}{m-1}=1\Leftrightarrow m+2=m-1\)
\(\Leftrightarrow0m=-3\)(vô lí)
e,ta có x+y=\(\frac{m}{m-1}+\frac{1}{m-1}=\frac{m+1}{m-1}=1+\frac{2}{m-1}\)(lưu ý chỉ làm đc với m\(\inℤ\))
để\(1+\frac{2}{m-1}\inℤ\Rightarrow m-1\inư\left(2\right)\)
\(\Rightarrow m-1\in\left\{\pm1;\pm2\right\}\Rightarrow m\in\left\{3;2;0\right\}\)
Ta có:
m − 2 x − 3 y = − 5 x + m y = 3 ⇔ m − 2 3 − m y − 3 y = − 5 x = 3 − m y ⇔ 3 m − m 2 y − 6 + 2 m y − 3 y = − 5 x = 3 − m y ⇔ m 2 − 2 m + 3 y = 3 m − 1 1 x = 3 − m y 2
Ta có: m 2 – 2 m + 3 = ( m – 1 ) 2 + 2 > 0 ∀ m nên PT (1) có nghiệm duy nhất ∀ m
Hay hệ phương trình có nghiệm duy nhất ∀ m
Từ (1) ta có: y = 3 m − 1 m 2 − 2 m + 3 thay vào (2) ta có x = 9 − 5 m m 2 − 2 m + 3
Vậy x ; y = 9 − 5 m m 2 − 2 m + 3 ; 3 m − 1 m 2 − 2 m + 3
Đáp án: B