Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì 2n+1 và 7n+6 là 2 số nguyên tố cùng nhau
=> ƯCLN(2n+1;7n+6) = 1
Vậy ƯCLN của 2n+1 và 7n+6 là 1
_HT_
Gọi d = ƯCLN(2n +1; 7n + 2)
Theo bài ra ta có :
\(\left\{{}\begin{matrix}2n+1⋮d\\7n+2⋮d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}7\left(2n+1\right)⋮d\\2\left(7n+1\right)⋮d\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}14n+7⋮d\\14n+4⋮d\end{matrix}\right.\)
=> (14n +7) - (14n + 4) chia hết cho d
=> 3 chia hết cho d
=> d thuộc Ư(3)
Để (2n +1; 7n + 2) = 1 <=> d = 1
Nếu d = 3 => 2n + 1 = 3k (k thuộc N) => 2n = 3k - 1
=> n = \(\dfrac{3k-1}{2}\)
Vậy để (2n + 1; 7n + 2) = 1 thì n \(\ne\) \(\dfrac{3k-1}{2}\) (k thuộc N)
@lê văn hợp
Gọi d là UC của 2n+1 và 7n+6 nên
\(2n+1⋮d\Rightarrow7\left(2n+1\right)=14n+7⋮d\)
\(7n+6⋮d\Rightarrow2\left(7n+6\right)=14n+12⋮d\)
\(\Rightarrow\left(14n+12\right)-\left(14n+7\right)=5⋮d\Rightarrow d=\left(-5;-1;1;5\right)\)
=> UCLN(2n+1;7n+6)=5
Lời giải:
Gọi $d=ƯCLN(2n+1, 7n+2)$
$\Rightarrow 2n+1\vdots d; 7n+2\vdots d$
$\Rightarrow 7(2n+1)-2(7n+2)\vdots d$
$\Rightarrow 3\vdots d$
Để 2 số trên nguyên tố cùng nhau thì $(3,d)=1$
$\Rightarrow 2n+1\not\vdots 3\Rightarrow 2n-2\not\vdots 3$
$\Rightarrow 2(n-1)\not\vdots 3$
$\Rightarrow n-1\not\vdots 3$
$\Rightarrow n\neq 3k+1$ với $k$ tư nhiên.
Mà $10< n< 1000$ nên:
$n\neq \left\{13; 16; 19; 22;....; 997\right\}$
Để 2n+1 và 7n+2 là hai số nguyên tố cùng nhau
<=> ƯCLN(2n+1;7n+2) = 1
<=> 7.(2n+1)-2.(7n+2) chia hết cho 1
<=> 14n+7-14n-4 chia hết cho 1
<=> 3 chia hết cho 1
Vậy n = 3 (thỏa mãn \(n\in N\) )
mik thấy câu rả lời này nhiều lắm,chắc các bn copy của nhau chớ gì.mik cần câu trả lời tự làm của các bn nhưng phải chi tiết ,rõ ràng và chính xác
Để 2n + 1 và 7n + 2 nguyên tố cùng nhau
<=> ƯCLN(2n + 1; 7n + 2) = 1
<=> 7.(2n + 1) - 2.(7n + 2) chia hết cho 1
<=> 14n + 7 - 14n + 4 chia hết cho 1
<=> 3 chia hết cho 1
Vậy n = 3
Lời giải:
Gọi ƯCLN$(2n+1, 7n+6)=d$
Ta có:
$2n+1\vdots d$
$7n+6\vdots d$
$\Rightarrow 2(7n+6)-7(2n+1)\vdots d$
$\Rightarrow 5\vdots d$
$\Rightarrow d=1$ hoặc $d=5$
Vì $2n+1, 7n+6$ không nguyên tố cùng nhau nên $d=5$
Vậy $ƯCLN(2n+1, 7n+6)=5$