Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4)
a) Ta có \(2^{10}+2^{11}+2^{12}\)
\(=2^{10}\left(1+2+4\right)=2^{10}\cdot7⋮7\)
Vậy: \(2^{10}+2^{11}+2^{12}\) chia hết cho 7(đpcm)
b) Ta có: 7*32=224=25+26+27
a)10n+1-6.10n
=10n.10-6.10n
=10n(10-6)
=10n.4
b)90.10n-10n+2+10n+1
=90.10n-10n.100+10n+10
=10n(90-100+10)
=10n.0
=0
a, \(10^{n+1}-6.10^n\)
= \(10^n.10-6.10^n\)
=\(10^n.\left(10-6\right)\)
=\(10^n.4\)
b, \(90.10^n-10^{n+2}-10^{n+1}\)
= \(90.10^n-10^n.10^2-10^n.10\)
= \(10^n.\left(90-10^2-10\right)\)
= \(10^n.\left(-20\right)\)
nhớ k cho mik nha!!!!!!!!!!!!!
Bài 4:
Ta có:
\(a^2-2a+b^2+4b+4c^2-4c+6=0\)
\(\Leftrightarrow a^2-2a+1+b^2+4b+4+4c^2-4c+1\)
\(\Leftrightarrow\left(a^2-2b+1\right)+\left(b^2+4b+4\right)+\left(4c^2-4c+1\right)\)
\(\Leftrightarrow\left(a-1\right)^2+\left(b+2\right)^2+\left(2c-1\right)^2\)
Mà \(\hept{\begin{cases}\left(a-1\right)^2\ge0\\\left(b+2\right)^2\ge0\\\left(2c-1\right)^2\ge0\end{cases}}\)
\(\Rightarrow\left(a-1\right)^2+\left(b+2\right)^2+\left(2c-1\right)^2\ge0\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(a-1\right)^2=0\\\left(b+2\right)^2=0\\\left(2c-1\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=1\\b=-2\\c=\frac{1}{2}\end{cases}}}\)
Vậy \(\left(a,b,c\right)=\left(1;-2;\frac{1}{2}\right)\)
Bài 1:
b:
x=9 nên x+1=10
\(M=x^{10}-x^9\left(x+1\right)+x^8\left(x+1\right)-x^7\left(x+1\right)+...-x\left(x+1\right)+x+1\)
\(=x^{10}-x^{10}-x^9+x^9+x^8-x^8-x^7+...-x^2-x+x+1\)
=1
c: \(N=\left(1+2+2^2+2^3+2^4\right)+2^5\left(1+2+2^2+2^3+2^4\right)+2^{10}\left(1+2+2^2+2^3+2^4\right)\)
\(=31\left(1+2^5+2^{10}\right)⋮31\)
Ta có :
\(10^{n-1}-6.10^n=10^n:10-6.10^n=10^n.\frac{1}{10}-6.10^n=\left(\frac{1}{10}-6\right).10^n=-5,9.10^n=a.10^n\)
Vậy a = -5,9