K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(3x^2\cdot x^{n+2m}\cdot x\cdot y\cdot y^{m-3}\)

\(=3x^{2+n+2m+1}\cdot y^{1+m-3}=3x^{2m+n+3}y^{m-2}\)

\(12\left(xy\right)^8x^7\cdot y^{4-m}=12x^8y^8\cdot x^7y^{4-m}=12x^{15}y^{12-m}\)

Để hai đơn thức đồng dạng thì \(\left\{{}\begin{matrix}m-2=12-m\\2m+n+3=15\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=7\\n+14=12\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=7\\n=-2\end{matrix}\right.\)

1 tháng 8 2016

3x2xn + 2mxyym - 3 = 3x2 + n + 2m + 1.y1 + m - 3 = 3x3 + 2m + n.ym - 2

12(xy)8x7y4 - m = 12x8y8x7y4 - m = 12x8 + 7y8 + 4 - m = 12x15y12 - m

2 đơn thức thu gọn trên đồng dạng với nhau

=> ym - 2 = y12 - m => m - 2 = 12 - m => m = 14 - m => 14 = 2m => m = 7

mà x3 + 2m + n = x15

=> 3 + 2m + n = 15 => n = 15 - 3 - 2m = 12 - 2.7 = 12 - 14 = -2 

25 tháng 9 2016

1. Đặt \(t=x^2,t\ge0\)

\(3x^4+4x^2-2\ge3.0+4.0-2=-2\)

=> MIN = -2 khi x = 0

2. \(\left(x^2+2\right)\left(x+1\right)=0\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x^2+2=0\\x+1=0\end{array}\right.\)

Vì \(x^2+2\ge2>0\) => Vô nghiệm

Vậy x+1 = 0 => x = -1

3. Kết quả là 10

4. Ko rõ đề

17 tháng 7 2019

a) =2x^3-10x^2-2x+3x^2-x

=2x^3-7x^2-3x

17 tháng 7 2019

b) -10x^4y^2z^2+35x^3y^2z^2+4x^4y^2z^2+4x^3y^2z^2

=-6x^4y^2z^2+39x^3y^2z^2

28 tháng 12 2015

5.\(C\text{ó}x^2-12=0\Rightarrow x^2=12\Rightarrow x=\sqrt{12}ho\text{ặc}x=-\sqrt{12}\)

Mà x>0\(\Rightarrow x=\sqrt{12}\)

6.Vì x-y=4\(\Rightarrow\left(x-y\right)^2=x^2-2xy+y^2=x^2-10+y^2=4^2=16\Rightarrow x^2+y^2=26\)

Có \(\left(x+y\right)^2=x^2+2xy+y^2=26+10=36=6^2=\left(-6\right)^2\)

Vì xy>0 và x>0 =>y>0=>x+y>0=>x+y=6

7. \(3x^2+7=\left(x+2\right)\left(3x+1\right)\)

\(3x^2+7=3x^2+7x+2\)

\(3x^2+7-3x^2-7x-2=0\)

-7x+5=0

-7x=-5

\(x=\frac{5}{7}\)

8.\(\left(2x+1\right)^2-4\left(x+2\right)^2=9\)

\(\left(2x+1\right)^2-\left(2x+4\right)^2=9\)

(2x+1-2x-4)(2x+1+2x+4)=9

-3(4x+5)=9

4x+5=-3

4x=-8

x=-2

Còn câu 9 và 10 để mình nghiên cứu đã

 

 

2 tháng 3 2017

biet x+y =2 tinh min 3x^2 + y^2

18 tháng 9 2019

Câu 1: xin sửa đề :D

CM: \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1\)là 1 scp

\(n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1\)

\(=\left(n^2+3n\right)\left(n^2+3n+2\right)+1\)

\(=\left(n^2+3n\right)^2+2\left(n^2+3n\right)+1\)

\(=\left(n^2+3n+1\right)^2\)là scp