\(\frac{x}{2}\)=\(\frac{7}{3}\) ; \...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2017

Từ \(\frac{x}{2}=\frac{7}{3}\Rightarrow x=\frac{14}{3}\)

Từ \(\frac{y}{5}=\frac{z}{4}\Rightarrow y=1,25z\)

Lại có: x - y + z = -21

\(\Leftrightarrow\) \(\frac{14}{3}-1,25z+z=-21\)

\(\Leftrightarrow z=\frac{-308}{3}\)

\(\Rightarrow y=1,25\times\frac{-308}{3}=\frac{-385}{3}\)

\(\Rightarrow\left|x+y-z\right|=\left|\frac{14}{3}+\frac{-385}{3}-\left(\frac{-308}{3}\right)\right|=21\)

14 tháng 3 2024

đặt x=2k ,y=5k, z=7k

=>A=2k-5k+7k/2k+10k-7k

      =(2-5+7)k/(2+10-7)k

     =4k/5k =4/5

23 tháng 1 2017

Đặt \(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}=k\)

=> x = 2k + 1

     y = 4k - 3

     z = 6k + 5

Thay vào biểu thức 5z - 3x - 4y = 50 , ta có :

5z - 3x - 4y = 50

=> 5.(6k + 5) - 3.(2k + 1) - 4.(4k - 3) = 50

=> 30k + 25 - (6k + 3) - (16k - 12) = 50

=> 30k + 25 - 6k - 3 - 16k + 12 = 50

=> (30k - 6k - 16k) + (25 - 3 + 12) = 50

=> 8k + 34 = 50

=> 8k = 16

=> k = 2

=> \(\hept{\begin{cases}x=2k+1=2.2+1=5\\y=4k+3=4.2+3=11\\z=6k+5=6.2+5=17\end{cases}}\)

b) 

Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\)

=> x = 2k 

     y = 3k 

     z = 4k

Thay vào biểu thức M , ta có :

\(M=\frac{y+z-x}{x-y+z}=\frac{3k+4k-2k}{2k-3k+4k}=\frac{5k}{3k}=\frac{5}{3}\)

18 tháng 6 2019

#)Giải :

a) Ta có : \(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{x}{15}=\frac{y}{20};\frac{y}{20}=\frac{z}{28}\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)

Áp dụng tính chất dãy tỉ số bằng nhau :

\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{186}{62}=3\)

\(\hept{\begin{cases}\frac{x}{15}=3\\\frac{y}{20}=3\\\frac{z}{28}=3\end{cases}\Rightarrow\hept{\begin{cases}x=45\\y=60\\z=84\end{cases}}}\)

Vậy x = 45; y = 60; z = 84

b) Áp dụng tính chất dãy tỉ số bằng nhau :

\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{\left(y+z+1\right)+\left(x+z+2\right)+\left(x+y-3\right)}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)

\(\Rightarrow\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}=2\)

\(\Rightarrow\hept{\begin{cases}y+z+1=2x\left(1\right)\\x+z+2=2y\left(2\right)\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x+y-3=2z\left(3\right)\\x+y+z=\frac{1}{2}\left(4\right)\end{cases}}\)

\(\left(+\right)x+y+z=\frac{1}{2}\Rightarrow y+z=\frac{1}{2}-z\)

Thay (1) vào (+) ta được :

\(\frac{1}{2}-x+1=2x\Rightarrow\frac{3}{2}=3x\Rightarrow x=\frac{1}{2}\)

\(\left(+_2\right)x+y+z=\frac{1}{2}\Rightarrow x+z=\frac{1}{2}-y\)

Thay (2) và (+2) ta được :

\(\frac{1}{2}-y+2=2y\Rightarrow\frac{5}{2}=3y\Rightarrow y=\frac{5}{6}\)

\(\left(+_3\right)x+y+z=\frac{1}{2}+\frac{5}{6}+z=\frac{1}{2}\Rightarrow\frac{4}{3}+z=\frac{1}{2}\Rightarrow z=\frac{-5}{6}\)

Vậy \(\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{5}{6}\\z=\frac{-5}{6}\end{cases}}\)

18 tháng 6 2019

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)

\(\Rightarrow x=2k;y=3k;z=5k\)

\(\Rightarrow xyz=2k\cdot3k\cdot5k=30k^3\)

Mà \(xyz=810\Rightarrow30k^3=810\)

\(\Rightarrow k^3=27\)

\(\Rightarrow k=3\)

Thay vào tìm x,,z.

18 tháng 6 2016

a)Đặt x/2=y/5=z/7=k suy ra x=2k, y=5k, z=7k> Thay vào A ta được kết quả là 4/5.

b)Vì x/3=y/4 nên x/15=y/20.Vì y/5=z/6 nên y/20=z/24

Suy ra:x/15=y/20=z/24.Tương tự phần a) đặt k rồi tính kết quả.


 

18 tháng 6 2016

a)Ta có:Ta có x/5 = y/4 = z/3 

Dễ thấy : y/4 = 2y/8 = -2y/-8 và z/3 = 3z/9 

Suy ra : x/5 = y/4 = z/3 => x/5 = 2y/8 = 3z/9 = (x + 2y + 3z)/(5 + 8 + 9) = (x + 2y + 3z)/22 
(tính chất của dãy tỉ số bằng nhau) 

Tương tự : x/5 = -2y/-8 = 3z/9 = (x - 2y + 3z)/(5 - 8 + 9) = (x- 2y + 3z)/6 

Ta có : (x + 2y + 3z)/22 = (x - 2y + 3z)/6 (cùng bằng x/5) 

=> (x + 2y + 3z)/(x - 2y + 3z) = 22/6 = 11/3 

b)cho x/3=y/4 va y/5=z/6.tinh M=2x+3y+4z/3x+4y+5z? | Yahoo Hỏi & Đáp

26 tháng 9 2018

\(\frac{x}{4}=\frac{y}{8}=\frac{x}{4}=\frac{2y}{16}=\frac{x+2y}{4+16}=\frac{x+2y}{20}\Rightarrow x+2y=\frac{20y}{8}\)

\(\frac{y}{8}=\frac{z}{5}=\frac{y+z}{8+5}=\frac{y+z}{13}\Rightarrow y+z=\frac{13y}{8}\)

\(\Rightarrow M=\frac{x+2y}{y+z}=\frac{20y}{8}.\frac{8}{13y}=\frac{20}{13}\)

N và P tính tương tự

16 tháng 12 2017

Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\)

\(\Rightarrow\hept{\begin{cases}x=2k\\y=3k\\z=4k\end{cases}}\)

.Ta có:\(P=\frac{y+z-x}{x-y+z}=\frac{3k+4k-2k}{2k-3k+4k}=\frac{5k}{3k}=\frac{5}{3}\)