Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)
\(\Leftrightarrow\frac{abz-cya}{a^2}=\frac{bcx-baz}{b^2}=\frac{cay-cbx}{c^2}=\frac{abz-cyz+bcx-baz+cay-cbx}{a^2+b^2+c^2}\)
\(=\frac{0}{a^2+b^2+c^2}=0\)
\(\Rightarrow\hept{\begin{cases}bz=cy\\cx=az\\ay=bx\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{c}=\frac{y}{b}\\\frac{x}{a}=\frac{z}{c}\\\frac{y}{b}=\frac{x}{a}\end{cases}}\Leftrightarrow\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
\(\Rightarrow\frac{a\left(bz-cy\right)}{a^2}=\frac{b\left(cx-az\right)}{b^2}=\frac{c\left(ay-bx\right)}{c^2}\)
\(\Rightarrow\frac{abz-acy}{a^2}=\frac{bcx-baz}{b^2}=\frac{cay-cbx}{c^2}\)
Do a,b,c khác 0, áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\Rightarrow\frac{abz-acy}{a^2}=\frac{bcx-baz}{b^2}=\frac{cay-cbx}{c^2}=\frac{0}{a^2+b^2+c^2}=0\)
\(\hept{\begin{cases}bz-cy=0\\cx-az=0\\ay-bx=0\end{cases}\Rightarrow\hept{\begin{cases}\frac{y}{b}=\frac{z}{c}\\\frac{x}{a}=\frac{z}{c}\\\frac{x}{a}=\frac{y}{b}\end{cases}\Rightarrow\frac{x}{a}=\frac{y}{b}=\frac{z}{c}}}\)
Vi bz = cy/a =cx-az/b =ay - bx/c
=>a(bz -cy )/a^2=b(cx-az)/b^2=c(ay-bx)/c^2
=>abz-acy/a^2=bcx =baz/b^2=cay-cbx/c^2
Theo tih chất của dãy tỉ số bằng nhau :
=>abz-acy/a^2=bcx=baz/b^2 =cay - cbx/c^2=a^2 + ....
=0/a^2 +b^2 +c^2 =0
Vi bz -cy /a=0=>bz=cy=y/b=z/c (1)
Vi cx - az/b=0=>cx=a=>x/a =z/c (2)
Từ (1) và (2) => x/a=y/b =z/c
Ta có: \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)
\(\Leftrightarrow\frac{x\left(bz-cy\right)}{ax}=\frac{y\left(cx-az\right)}{by}=\frac{z\left(ay-bx\right)}{cz}\)
\(\Leftrightarrow\frac{bxz-cxy}{ax}=\frac{cxy-ayz}{by}=\frac{ayz-bxz}{cz}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\Leftrightarrow\frac{bxz-cxy+cxy-ayz+ayz-bxz}{ax+by+cz}=\frac{0}{ax+by+cz}=0\)
\(\Rightarrow\begin{cases}\frac{bz-cy}{a}=0\Leftrightarrow bz-cy=0\Leftrightarrow bz=cy\Leftrightarrow\frac{z}{c}=\frac{y}{b}\left(1\right)\\\frac{cx-az}{b}=0\Leftrightarrow cx-az=0\Leftrightarrow cx=az\Leftrightarrow\frac{x}{a}=\frac{z}{c}\left(2\right)\\\frac{ay-bx}{c}=0\Leftrightarrow ay-bx=0\Leftrightarrow ay=bx\Leftrightarrow\frac{y}{b}=\frac{x}{a}\left(3\right)\end{cases}\)
Từ (1),(2),(3) suy ra \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
\(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)
\(\Rightarrow\frac{x\left(bz-cy\right)}{ax}=\frac{y\left(cx-az\right)}{by}=\frac{z\left(ay-bx\right)}{cz}\)
\(\Leftrightarrow\frac{bxz-cxy}{ax}=\frac{cxy-ayz}{by}=\frac{ayz-bxz}{cz}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có :
\(\frac{bxz-cxy}{ax}=\frac{cxy-ayz}{by}=\frac{ayz-bxz}{cz}=\frac{bxz-cxy+cxy-ayz+ayz-bxz}{ax+by+cz}=0\)
\(\Rightarrow\hept{\begin{cases}bz-cy=0\\cx-az=0\\ay-bx=0\end{cases}}\Rightarrow\hept{\begin{cases}bz=cy\\cx=az\\ay=bx\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\frac{b}{y}=\frac{c}{z}\\\frac{c}{z}=\frac{a}{x}\\\frac{a}{c}=\frac{b}{y}\end{cases}}\)
=> Điều cần chứng minh
#)Tuy k giải được nhưng có bài cho tham khảo nek :
Câu hỏi của Hann Hann - Toán lớp 7 - Học toán với OnlineMath
Link : https://olm.vn/hoi-dap/detail/7941323649.html
Mk sẽ gửi về chat cho
Giải:
Đặt : \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=k\) => \(\hept{\begin{cases}x=ak\\y=bk\\z=ck\end{cases}}\)
Khi đó, ta có:
\(\frac{b.ck-c.bk}{a}=\frac{0}{a}=0\) (1)
\(\frac{c.ak-a.ck}{b}=\frac{0}{b}=0\) (2)
\(\frac{a.bk-b.ak}{c}=\frac{0}{c}=0\) (3)
Từ (1); (2); (3) suy ra \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)
\(\Rightarrow\frac{a\left(bz-cy\right)}{a^2}=\frac{b\left(cx-az\right)}{b^2}=\frac{c\left(ay-bx\right)}{c^2}\)
\(\Rightarrow\frac{abz-acy}{a^2}=\frac{bcx-abz}{b^2}=\frac{acy-bcx}{c^2}\)
\(\text{Theo tính chất của dãy tỉ số bằng nhau ,ta có:}\)
\(\frac{abx-acy}{a^2}=\frac{bcx-abz}{b^2}=\frac{acy-bcx}{c^2}\)
\(\Rightarrow\frac{abx-acy+bcx-abz+acy-bcx}{a^2+b^2+c^2}=0\)
\(\Rightarrow bz-cy=0\)\(\text{và}\)\(cx-az=0\)
\(bz-cy=0\Rightarrow bz=cy\Rightarrow\frac{b}{y}=\frac{c}{z}\)
\(cx-az=0\Rightarrow cx=az\Rightarrow\frac{c}{z}=\frac{a}{x}\)
\(\text{Vậy}\)\(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)