\(\frac{a}{b}=\frac{2}{5},a< 0,ab=40\)

tính \(a-b\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 2 2021

thôi ra rồi các bạn ạ

ko cần giải cho mình đâu, a-b=6

27 tháng 10 2018

Bạn viết đề rõ hơn được không? Mình không hiểu đề lắm

27 tháng 10 2018

\(\frac{a}{b}\)<\(\frac{c}{d}\)và b,d>0 CMR:\(\frac{a}{b}\)<\(\frac{ab+cd}{b^2+d^2}\)<\(\frac{c}{d}\)

21 tháng 6 2017

a) phải là a.d<b.c

 chứ ko phải a,d<b,c đâu

5 tháng 6 2019

1.b) \(\left(\left|x\right|-3\right)\left(x^2+4\right)< 0\)

\(\Rightarrow\hept{\begin{cases}\left|x\right|-3\\x^2+4\end{cases}}\) trái dấu

\(TH1:\hept{\begin{cases}\left|x\right|-3< 0\\x^2+4>0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left|x\right|< 3\\x^2>-4\end{cases}}\Leftrightarrow x\in\left\{0;\pm1;\pm2\right\}\)

\(TH1:\hept{\begin{cases}\left|x\right|-3>0\\x^2+4< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left|x\right|>3\\x^2< -4\end{cases}}\Leftrightarrow x\in\left\{\varnothing\right\}\)

Vậy \(x\in\left\{0;\pm1;\pm2\right\}\)

5 tháng 6 2019

Bài 1b) có thể giải gọn hơn nhuư thế này

6 tháng 7 2018

a, Để (a+1)(a-2)<0 

=>a+1,a-2 trái dấu

TH1: \(\hept{\begin{cases}a+1>0\\a-2< 0\end{cases}\Rightarrow\hept{\begin{cases}a>-1\\a< 2\end{cases}\Rightarrow}-1< a< 2}\) 

TH2: \(\hept{\begin{cases}a+1< 0\\a-2>0\end{cases}\Rightarrow\hept{\begin{cases}a< -1\\a>2\end{cases}\left(loại\right)}}\)

Vậy -1<a<2

b, \(\frac{a}{b}=\frac{2}{5}\Rightarrow\frac{a}{2}=\frac{b}{5}\)

Đặt \(\frac{a}{2}=\frac{b}{5}=k\Rightarrow a=2k,b=5k\)

Ta có: ab=40 

=>2k.5k=40

=>10k2=40

=>k2=4

=>k=\(\pm2\)

Với k=2 => a=4,b=10

Với k=-2 => a=-4,b=-10

Vậy...

\(\frac{a}{b}=\frac{3}{5}\Rightarrow\frac{a}{3}=\frac{b}{5}\Rightarrow\frac{a^2}{9}=\frac{b^2}{25}=\frac{a^2-b^2}{9-25}=\frac{-64}{-16}=4\)

\(\Rightarrow\frac{a^2}{9}=4\Rightarrow a^2=36\Rightarrow a=\pm6\)

\(\frac{b^2}{25}=4\Rightarrow b^2=100\Rightarrow b=\pm10\)

Vậy...

25 tháng 5 2018

\(\frac{ab}{c}< 0\)

\(\Rightarrow\)ab và c trái dấu

\(\Rightarrow\)(ab)c < 0 \(\Rightarrow\)a(bc) < 0

\(\Rightarrow\)a và bc trái dấu 

\(\Rightarrow\)\(\frac{bc}{a}< 0\)

31 tháng 8 2020

                                                                     Bài giải

Thay \(x=\frac{a}{m}\text{ ; }y=\frac{b}{m}\text{ ; }z=\frac{a+b}{m}\) vào  \(P\) ta được : 

\(P=\frac{\frac{a}{m}+\frac{b}{m}}{\frac{b}{m}+\frac{a+b}{m}}=\frac{\frac{a+m}{m}}{\frac{a+2b}{m}}=\frac{a+b}{m}\cdot\frac{m}{a+2b}=\frac{a+b}{a+2b}\)

Áp dụng : 

\(\frac{\frac{1}{4}+\frac{1}{2}}{\frac{1}{2}+\frac{3}{4}}=\frac{\frac{3}{4}}{\frac{5}{4}}=\frac{3}{4}\cdot\frac{4}{5}=\frac{3}{5}\)

31 tháng 8 2020

Cảm ơn bạn!

Ai giúp mình hai câu cuối với!

24 tháng 11 2016

Gọi biểu thức cần so sánh là A

Nếu a< b thì ​​\(\frac{a}{b+m}< \frac{a}{b}< \frac{a+m}{b+m}\)

=> \(\frac{a}{a+b+c+d}< \frac{a}{a+b+c}< \frac{a+d}{a+b+c+d}\)

\(\frac{b}{a+b+c+d}< \frac{b}{b+c+d}< \frac{b+a}{a+b+c+d}\)

\(\frac{c}{a+b+c+d}< \frac{c}{c+d+a}< \frac{c+b}{a+b+c+d}\)

\(\frac{d}{a+b+c+d}< \frac{d}{d+a+b}< \frac{d+c}{a+b+c+d}\)

=> cộng các vế trái với nhau, vế giữa với nhau, vế phải với nhau, dâu < giữ nguyên, trong đó vế trái cộng lại rút gọn được 1, vế giữa là A, vế phải cộng lại rút gọn được 2, ra điều phải cm

29 tháng 8 2020

Mình thiếu nhé. Câu b chứng minh p(ở câu a) < t

a, \(p=\frac{x+y}{y+z}=\frac{\frac{a}{m}+\frac{b}{m}}{\frac{b}{m}+\frac{a+b}{m}}=\frac{\frac{a+b}{m}}{\frac{a+b^2}{m}}=\frac{a+b}{a+b^2}\)

\(\frac{\frac{1}{4}+\frac{1}{2}}{\frac{1}{2}+\frac{3}{4}}=\frac{\frac{1}{4}+\frac{2}{4}}{\frac{2}{4}+\frac{1+2}{4}}=\frac{1+2}{1+2^2}=\frac{3}{5}\)

Hok tốt !!!!!!!!!