Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{a+c}{b}\)
<=> \(\frac{a+b}{c}+1=\frac{b+c}{a}+1=\frac{a+c}{b}+1\)
<=> \(\frac{a+b+c}{c}=\frac{a+b+c}{a}=\frac{a+b+c}{b}\)
<=> a + b + c = 0 hoặc a = b = c.
Th1: a + b + c = 0
=> a + b = - c ; a + c = -b ; b + c = -a.
Thế vào P :
\(P=\left(1+\frac{a}{b}\right)\cdot\left(1+\frac{b}{c}\right)\cdot\left(1+\frac{c}{a}\right)\)
\(=\left(\frac{a+b}{b}\right)\cdot\left(\frac{b+c}{c}\right)\cdot\left(\frac{c+a}{a}\right)\)
\(=-\frac{c}{b}.\frac{\left(-a\right)}{c}.\frac{\left(-b\right)}{a}=-1\)
TH2: a = b = c. THế vào P
\(P=\left(1+1\right).\left(1+1\right).\left(1+1\right)=8\)
Vậy: P = -1 nếu a + b + c = 0
hoặc P = 8 nếu a = b = c.
\(P=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\frac{a+b}{b}.\frac{b+c}{c}.\frac{c+a}{a}\)
Ta có: \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{a+c}{b}\)\(\Rightarrow\frac{a+b}{c}+1=\frac{b+c}{a}+1=\frac{a+c}{b}+1=\frac{a+b+c}{c}=\frac{a+b+c}{a}=\frac{a+b+c}{b}\)
TH1: Nếu \(a+b+c=0\)\(\Rightarrow\hept{\begin{cases}a+b=-c\\b+c=-a\\c+a=-b\end{cases}}\)
\(\Rightarrow P=\frac{-c}{b}.\frac{-a}{c}.\frac{-b}{a}=\frac{\left(-a\right).\left(-b\right).\left(-c\right)}{abc}=-1\)
TH2: Nếu \(a+b+c\ne0\)\(\Rightarrow a=b=c\)
\(\Rightarrow\hept{\begin{cases}a+b=2b\\b+c=2c\\c+a=2a\end{cases}}\)\(\Rightarrow P=\frac{2b}{b}.\frac{2c}{c}.\frac{2a}{a}=2.2.2=8\)
Vậy \(P=-1\)hoặc \(P=8\)
cộng thêm 1 của mỗi đẳng thức :
\(\frac{a}{b+c}+1=\frac{c}{a+b}+1=\frac{b}{c+a}+1\)
hay \(\frac{a+b+c}{b+c}=\frac{a+b+c}{a+b}=\frac{a+b+c}{c+a}\)
với a + b + c = 0 thì :
b + c = -a ; a + b = -c ; c + a = -b
nên \(20.\left(\frac{a}{b+c}\right)+3.\left(\frac{c}{a+b}\right)+1998.\left(\frac{b}{c+a}\right)=20.\left(\frac{a}{-a}\right)+3.\left(\frac{c}{-c}\right)+1998.\left(\frac{b}{-b}\right)\)
hay \(20.\left(-1\right)+3.\left(-1\right)+1998.\left(-1\right)=-20+\left(-3\right)+\left(-1998\right)=-2021\)
với a + b + c khác 0 thì : a = b = c
nên \(20.\left(\frac{a}{b+c}\right)+3.\left(\frac{c}{a+b}\right)+1998.\left(\frac{b}{c+a}\right)=20.\frac{1}{2}+3.\frac{1}{2}+1998.\frac{1}{2}=\frac{2021}{2}\)
Nếu a+b+c = 0 => Biểu thức = 20.(-1)+3.(-1)+1998.(-1) = -2021
Nếu a+b+c khác 0 thì :
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
a/b+c = c/a+b = b/c+a = a+b+c/2a+2b+2c = 1/2
=> Biểu thức = 20.1/2+3.1/2+1998.1/2 = 2021/2
Vậy ............
k mk nha
Câu hỏi của Chu Hoàng THủy Tiên - Toán lớp 7 - Học toán với OnlineMath
ta có (a+b-c/c)+2=(a-b+c/b)+2=(-a+b+c/a)+2
=>a+b-c+2c/c=a-b+c+2b/b=-a+b+c+2a/a
=>a+b+c/c=a+b+c/b=a+b+c/a (1)
Trường hợp 1
Nếu a+b+c=0 => a+b=-c
=> b+c=-a
=> a+c=-b
M= (-c)(-a)(-a)/abc = -1
Trường hợp 2
Từ (1) =>(a+b+c). 1/c =(a+b+c). 1/b =(a+b+c). 1/a
=>1/a=1/b=1/c
Từ (1) =>3(a+b+c)/a+b+c=3
hay (a+b/c)+1=(a+c/b)+1=(b+c/a)=2
Nguyễn Trọng Tâm Đạt làm sai một TH nhé =)
trường hợp 2
\(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}\)
\(2+\frac{a+b-c}{c}=2+\frac{a-b+c}{b}=2+\frac{-a+b+c}{a}\)
\(\Rightarrow\frac{a+b+c}{c}=\frac{a+b+c}{b}=\frac{a+b+c}{a}\)
\(\Rightarrow a=b=c\)
thay a=b=c vào M ta có
\(M=\frac{\left(b+b\right).\left(b+c\right).\left(c+a\right)}{a.b.c}=\frac{2a.2a.2a}{aaa}=\frac{8.a^3}{a^3}=8\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
=> \(\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
a, Ta có:\(\frac{a-b}{a+b}=\frac{bk-b}{bk+b}=\frac{b.\left(k-1\right)}{b.\left(k+1\right)}=\frac{k-1}{k+1}\left(1\right)\)
Lại có \(\frac{c-d}{c+d}=\frac{dk-d}{dk+d}=\frac{d.\left(k-1\right)}{d.\left(k+1\right)}=\frac{k-1}{k+1}\left(2\right)\)
Từ (1) và (2) => ĐPCM
b, Ta có \(\frac{a.b}{c.d}=\frac{bk.b}{dk.d}=\frac{b^2}{d^2}\left(1\right)\)
Lại có \(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{\left(bk+b\right)^2}{\left(dk+d\right)^2}=\frac{b^2.\left(k+1\right)^2}{d^2.\left(k+1\right)^2}=\frac{b^2}{d^2}\left(2\right)\)
Từ (1) và (2) => ĐPCM
Áp dụng tính chất dãy tỉ số bằng nhau, có :
\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{a+c-b}{b}\)\(=\frac{a+b-c+b+c-a+a+c-b}{c+a+b}\)\(=\frac{a+b+c}{c+a+b}=1\)
\(\Rightarrow\hept{\begin{cases}\frac{a+b-c}{c}=1\Rightarrow\frac{a+b}{c}=2\left(\frac{a+b}{c}-\frac{c}{c}=1\Rightarrow\frac{a+b}{c}-1=1\right)\\\frac{b+c-a}{a}=1\Rightarrow\frac{b+c}{a}=2\\\frac{a+c-b}{b}=1\Rightarrow\frac{a+c}{b}=2\end{cases}}\) ( Tương tự )
Có : \(\left(1+\frac{b}{a}\right)\cdot\left(1+\frac{a}{c}\right)\cdot\left(1+\frac{c}{b}\right)=\frac{a+b}{a}\cdot\frac{a+c}{c}\cdot\frac{b+c}{b}\)
Hay: \(=\frac{a+b}{c}\cdot\frac{b+c}{a}\cdot\frac{a+c}{b}\)( phép nhân có tính chất giao hoán )
\(=2\cdot2\cdot2=8\)