Biết độ dài ba đường cao của một tam giác tỉ lệ với \(\frac{1}{5};\frac{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2016

Gọi độ dài 3 cạnh của tam giác đó lần lượt là a,b,c (m) (c>b>a>0)

Theo bài ra ta có:

\(a:b:c=2:5:9\Rightarrow\frac{a}{2}=\frac{b}{5}=\frac{c}{9}\)

\(c-a=14\). Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a}{2}=\frac{b}{5}=\frac{c}{9}=\frac{c-a}{9-2}=\frac{14}{7}=2\)

\(\Rightarrow\begin{cases}\frac{a}{2}=2\Rightarrow a=2\cdot2=4\\\frac{b}{5}=2\Rightarrow b=2\cdot5=10\\\frac{c}{9}=2\Rightarrow c=2\cdot9=18\end{cases}\) (thỏa mãn)

Vậy độ dài 3 cạnh của tam giác đó lần lượt là 4m; 10m; 18m

 

18 tháng 12 2016

gọi độ dài 3 cạnh của 1 tam giác là a, b,c (a,b,c>0, m)

+vì độ dài 3 cạnh tỉ lệ với 2;5;9

\(\Rightarrow\) \(\frac{a}{2}\) = \(\frac{b}{5}\) = \(\frac{c}{9}\)

+ vì canh nhỏ nhất ngắn hơn cạnh lớn nhất là 14m

\(\Rightarrow\) c-a= 14

áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{c-a}{9-2}\)= \(\frac{14}{7}\)= 2

\(\Rightarrow\) a= 2.2= 4

b= 5.2= 10

c= 9.2= 18

vậy độ dài 3 cạnh của 1 tam giác lần lượt là: 4m; 10m; 18m

 

8 tháng 9 2020

b1 :

a. gọi độ dài 3 cạnh của tg là a;b;c (a;b;c > 0; m)

vì 3 cạnh lần lượt tỉ lệ với 3;5;7 nên :

a/3 = b/5 = c/7 

=> (a+b+c)/(3+5+7) =  a/3 = b/5 = c/7 mà a+b+c = 45 (chu vi)

=> 45/15 = a/3 = b/5 = c/7  = 3

=> a = 3.3 = 9; b = 5.3 = 15; c = 7.3 = 21      (tm)

b, 

 gọi độ dài 3 cạnh của tg là a;b;c (a;b;c > 0; m)

vì 3 cạnh lần lượt tỉ lệ với 3;5;7 nên :

a/3 = b/5 = c/7 

=> (a+c-b)/(3+7-5) =  a/3 = b/5 = c/7    mà a+c-b = 20

=> 20/5 =   a/3 = b/5 = c/7  = 4

=> a = 3.4 = 12; b = 4.5 = 20; c =  4.7 = 28   (tm)

6 tháng 3 2018

gọi độ dài mỗi cạnh là x,y,z

vì x,y,z thỉ lệ thuận 2;5;9

\(\Rightarrow\)\(\frac{x}{2}=\frac{y}{5}=\frac{z}{9}\)

áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x}{2}=\frac{y}{5}=\frac{z}{9}=\frac{z-x}{9-2}=\frac{14}{7}=2\)

từ \(\frac{x}{2}=2\Rightarrow x=4\)

\(\frac{y}{5}=2\Rightarrow y=10\)

\(\frac{z}{9}=2\Rightarrow z=18\)

                   vậy x = 4; y = 10; z = 18.

2 tháng 3 2020

Gọi độ dài 3 cạnh của tam giác đó lần lượt là a,b,c (m) (c>b>a>0)

Theo bài ra ta có:

a:b:c=2:5:9⇒a2=b5=c9a:b:c=2:5:9⇒a2=b5=c9

c−a=14c−a=14. Áp dụng tính chất dãy tỉ số bằng nhau ta có:

a2=b5=c9=c−a9−2=147=2a2=b5=c9=c−a9−2=147=2

⇒⎧⎩⎨⎪⎪a2=2⇒a=2⋅2=4b5=2⇒b=2⋅5=10c9=2⇒c=2⋅9=18⇒{a2=2⇒a=2⋅2=4b5=2⇒b=2⋅5=10c9=2⇒c=2⋅9=18 (thỏa mãn)

Vậy độ dài 3 cạnh của tam giác đó lần lượt là 4m; 10m; 18m

20 tháng 10 2017

Mình làm bài 2 nhé :

Gọi các góc của tam giác lần lượt là a , b , c 

Theo đề bài ta có :

\(\frac{a}{1}=\frac{b}{2}=\frac{c}{3};a+b+c=180\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{a}{1}=\frac{b}{2}=\frac{c}{3}=\frac{a+b+c}{1+2+3}=\frac{180}{6}=30\)

\(\Rightarrow\)\(a=30.1=30\)

\(b=30.2=60\)

\(c=30.3=90\)

Vậy bạn tự kết luận nha 

1 tháng 8 2020

gọi a,b lần lượt là chiều dài , chiều rộng của tam giác (a,b > 0 ) 

ta có nữa chu vi hình chữ nhật là \(a+b=90:2=45\)

ta có  \(a:b=2:3\Leftrightarrow\frac{a}{b}=\frac{2}{3}\Leftrightarrow\frac{a}{2}=\frac{b}{3}\)và a+b=45

theo tính chất dãy tỉ số bằng nhau có 

\(\frac{a}{2}=\frac{b}{3}=\frac{a+b}{2+3}=\frac{45}{5}=9\)

do đó

\(\hept{\begin{cases}\frac{a}{2}=9\Leftrightarrow a=2.9=18\\\frac{b}{3}=9\Leftrightarrow b=3.9=27\end{cases}}\)

vậy chiều dài tam giác là 18 chiều rộng tam giác lf 27

bài 2:

gọi độ dài mỗi cạnh của tam giác lần lượt là a,b,c tỉ lệ với 5;7;4

theo đề ta có: \(\frac{a}{5}=\frac{b}{7}=\frac{c}{4}\) và a + b + c = 64

áp dụng t/c DTSBN ta có:

\(\frac{a}{5}=\frac{b}{7}=\frac{c}{4}=\frac{a+b+c}{5+7+4}=\frac{64}{16}=4\)

=> \(\hept{\begin{cases}\frac{a}{5}=4\\\frac{b}{7}=4\\\frac{c}{4}=4\end{cases}}\)

=> \(\hept{\begin{cases}a=20\\b=28\\c=16\end{cases}}\)

vậy độ dài mỗi cạnh của tam giác lần lượt là 20cm ; 28cm ; 16cm

chúc bạn học tốt!!! ^^

546456546544575678456457467684594262645654745745756756756856856454564563463

16 tháng 9 2016

bạn ơi còn bài 1

19 tháng 4 2020

ta có định lý tổng hai cạnh trong tam giác luôn luôn lớn hớn cạnh còn lại

nếu cạnh lớn nhất đó lớn hơn một nửa chu vi thì nó sẽ lớn hơn cả tổng hai cạnh còn lại và như thế là sai với định lý

b) cạnh lớn nhất là cạnh lớn hơn hai cạnh còn lại hoặc bằng một hoặc cả hai canhj còn lai

giả sử cạnh đó nhỏ hơn 1 nửa chu vi thì tổng hai cạnh còn lại lớn hơn 2 phần 3 chu vi và chắc chắn nó sẽ lớn hơn cạnh lớn nhất ( vô lí)

suy ra cạnh lớn nhất phải lớn hơn hoặc bằng 1 phần 3 chu vi

1. Tìm các số tự nhiên a, b, c khác 0 thỏa mãn:\(\frac{28}{29}< \frac{1}{a}+\frac{1}{b}+\frac{1}{c}< 1.\)2. Chứng minh rằng trọng tâm, trực tâm và tâm đường tròn nội tiếp (giao điểm của 3 đường trung trực) trong một tam giác thẳng hàng.3. chứng minh rằng nếu a,b,c là các số hửu tỉ thì \(\sqrt{a}+\sqrt{b}+\sqrt{c}\)là số hửu tỉ.4.Cho tam giác ABC có \(\widehat{A}=30^0\), BC=2cm. Trên cạnh AC lấy điểm D sao...
Đọc tiếp

1. Tìm các số tự nhiên a, b, c khác 0 thỏa mãn:\(\frac{28}{29}< \frac{1}{a}+\frac{1}{b}+\frac{1}{c}< 1.\)

2. Chứng minh rằng trọng tâm, trực tâm và tâm đường tròn nội tiếp (giao điểm của 3 đường trung trực) trong một tam giác thẳng hàng.

3. chứng minh rằng nếu a,b,c là các số hửu tỉ thì \(\sqrt{a}+\sqrt{b}+\sqrt{c}\)là số hửu tỉ.

4.Cho tam giác ABC có \(\widehat{A}=30^0\), BC=2cm. Trên cạnh AC lấy điểm D sao cho \(\widehat{CBD}=60^0\). Tính độ dài AD.

5. Tìm các số a,b sao cho 2007ab là bình phương của số tự nhiên.

6. Cho tam giác ABC vuông tại A, đường cao AH. Gọi M,N lần lượt là trung điểm của AH và BH. Chứng minh rằng \(CM\perp AN\)

7. Chứng minh rằng: \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+....+\frac{1}{\sqrt{100}}>10\)

8. Cho tam giác ABC, H là trực tâm, O là tâm đường tròn đi qua ba đỉnh của tam giác. Chứng minh rằng khoảng cách từ O đến một cạnh của tam giác bằng một nửa khoảng cách từ H đến đỉnh đối diện.

9. Tìm x,y,z biết: \(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)

10. Độ dài ba cạnh của 1 tam giác tỉ lệ với 2;3;4. Hỏi ba chiều cao tương ứng của tam giác đó tỉ lệ với ba số nào?

2
11 tháng 4 2018

Bài 7 : 

( bạn đạt A = (...) cái biểu thức đấy nhé, tự đặt ) 

Ta có : 

\(\frac{1}{\sqrt{1}}=\frac{1}{1}>\frac{1}{10}=\frac{1}{\sqrt{100}}\)

\(\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{100}}\)

\(\frac{1}{\sqrt{3}}>\frac{1}{\sqrt{100}}\)

\(............\)

\(\frac{1}{\sqrt{100}}=\frac{1}{\sqrt{100}}\)

\(\Rightarrow\)\(A=\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}>\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+...+\frac{1}{\sqrt{100}}\)

\(A>\frac{100}{\sqrt{100}}=\frac{100}{10}=10\)

\(\Rightarrow\)\(A>10\)

Vậy \(A>10\)

Chúc bạn học tốt ~ 

11 tháng 4 2018

Bạn làm được mình bài 7 thôi à, mình thấy bạn giỏi lắm mà. Mình có tới mấy chục bài cần giải cơ. Dạo này mình hỏi nhiều vì sắp đi thi.

6 tháng 12 2015

Pạn biết cách làm không?? Nguyễn Hữu Huy

6 tháng 12 2015

x=4 nha

 TIK TUI DI MÀ > _<