Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 2:
Theo đề, ta có: \(\dfrac{10a+b}{a+b}=\dfrac{10b+c}{b+c}\)
=>10ab+10ac+b^2+bc=10ab+10b^2+ac+bc
=>9ac-9b^2=0
=>ac-b^2=0
=>ac=b^2
=>a/b=b/c
Giải:
\(a^2=bc\Rightarrow\dfrac{a}{c}=\dfrac{b}{a}\) hay \(\dfrac{a}{b}=\dfrac{c}{a}\)
a, Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{c}=\dfrac{b}{a}=\dfrac{a+b}{c+a}=\dfrac{a-b}{c-a}\)
\(\Rightarrow\dfrac{a+b}{c+a}=\dfrac{a-b}{c-a}\Rightarrow\dfrac{a+b}{a-b}=\dfrac{c+a}{c-a}\)
\(\Rightarrowđpcm\)
b, \(\dfrac{a}{b}=\dfrac{c}{a}\Rightarrow\dfrac{a^2}{b^2}=\dfrac{c^2}{a^2}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a^2}{b^2}=\dfrac{c^2}{a^2}=\dfrac{a^2+c^2}{b^2+a^2}\)
\(\Rightarrow\dfrac{a^2+c^2}{b^2+a^2}=\dfrac{a^2}{b^2}=\dfrac{a}{b}.\dfrac{c}{a}=\dfrac{c}{b}\)
\(\Rightarrowđpcm\)
1. Ta có: \(\dfrac{a}{b}=\dfrac{ab}{cd},\dfrac{c}{d}=\dfrac{bc}{bd}\)
a) Mẫu chung bd > 0 ( do b > 0, d > 0 ) nên nếu \(\dfrac{ad}{bd}< \dfrac{bc}{bd}\) thì ad < bc
b) Ngược lại, Nếu ad < bc thì \(\dfrac{ad}{bd}< \dfrac{bc}{bd}.\Rightarrow\dfrac{a}{b}< \dfrac{c}{d}\)
Ta có thể viết: \(\dfrac{a}{b}< \dfrac{c}{d}\Leftrightarrow ad< bc\)
2. a) Ta có: \(\dfrac{a}{b}< \dfrac{c}{d}\Rightarrow ad< bc\) ( 1 )
Thêm ab vào 2 vế của (1): \(ad+ab< bc+ab\)
\(a\left(b+d\right)< b\left(a+c\right)\Rightarrow\dfrac{a}{b}< \dfrac{a+c}{b+d}\) ( 2 )
Thêm cd vào 2 vế của (1): \(ad+cd< bc+cd\)
\(d\left(a+c\right)< c\left(b+d\right)\Rightarrow\dfrac{a+c}{b+d}< \dfrac{c}{d}\) ( 3 )
Từ (2) và (3) ta có: \(\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{c}{d}\)
\(a,\)
Xét \(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow ad=bc\)
mà \(ad=bc\left(gt\right)\)
\(\Rightarrow\dfrac{a}{b}=\dfrac{c}{d}\)
\(b,\)
\(\dfrac{a}{b}=\dfrac{c}{d}\) (Chứng minh câu a)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}\)
\(\Rightarrow\dfrac{a+c}{b+d}=\dfrac{a}{b}\)
\(c,\)
Xét \(\dfrac{a}{c}=\dfrac{b}{d}\Leftrightarrow ad=bc\)
mà \(ad=bc\left(gt\right)\)
\(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)
\(d,\)
\(\dfrac{a}{c}=\dfrac{b}{d}\) (Chứng minh câu c)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\)
\(\Rightarrow\dfrac{a}{c}=\dfrac{a+b}{c+d}\)
\(\Rightarrow\dfrac{a}{a+b}=\dfrac{c}{c+d}\)
\(e,\)
\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{2a}{2c}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{2a}{2c}=\dfrac{2a+b}{2c+d}\)
\(\Rightarrow\dfrac{2a+b}{2c+d}=\dfrac{a}{c}\)
\(\dfrac{b+c}{bc}=\dfrac{2}{a}\) <=>\(ab+ac=2bc\)
<=>\(bc-ab=ac-bc\)
<=>\(b\left(c-a\right)=c\left(a-b\right)\)
<=>\(\dfrac{b}{c}=\dfrac{a-b}{c-a}\)(ĐPCM)
Chúc Bạn Học Tốt,đạt nhiều thành tích trong học tập :)
Từ \(\dfrac{b}{c}=\dfrac{a-b}{c-a}\)\(\Rightarrow b\left(c-a\right)=c\left(a-b\right)\)
\(\Rightarrow bc-ab=ac-bc\)
\(\Rightarrow2bc=ac+ab\)\(\Rightarrow2bc=a\left(b+c\right)\)
\(\Rightarrow\dfrac{b+c}{bc}=\dfrac{2}{a}\) (ĐPCM)
Giải :
ta có : a.b + a.c = b.c +b.c
=> a.c - b.c = b.c - a.b
=> c.( a - b ) = b.( c - a )
=> \(\dfrac{b}{c}\) = \(\dfrac{a-b}{c-a}\)
Bài 2:
Đặt a/b=c/d=k
=>a=bk; c=dk
a: \(\dfrac{a}{a+b}=\dfrac{bk}{bk+b}=\dfrac{k}{k+1}\)
\(\dfrac{c}{c+d}=\dfrac{dk}{dk+d}=\dfrac{k}{k+1}\)
Do đó: \(\dfrac{a}{a+b}=\dfrac{c}{c+d}\)
b: \(\dfrac{7a^2+5ac}{7a^2-5ac}=\dfrac{7\cdot b^2k^2+5\cdot bk\cdot dk}{7\cdot b^2k^2-5\cdot bk\cdot dk}\)
\(=\dfrac{7b^2k^2+5bdk^2}{7b^2k^2-5bdk^2}=\dfrac{7b^2+5bd}{7b^2-5bd}\)(đpcm)
\(\dfrac{ab}{a+b}=\dfrac{bc}{b+c}=\dfrac{ca}{c+a}\)
=> \(\dfrac{abc}{ac+bc}=\dfrac{abc}{ab+ac}=\dfrac{abc}{bc+ab}\)
=> ac + bc = ab + ac = bc + ab (do abc \(\ne0\))
=> ac + bc - ab - ac = 0
=> bc - ab = 0
=> b(c - a) = 0
Mà b \(\ne0\) nên c - a = 0 => c = a
Tương tự ta có: a = b
Từ đó có: a = b = c
Thay vào M được:
\(M=\dfrac{a^2+a^2+a^2}{a^2+a^2+a^2}=1\)
b) Ta có: [tex]\frac{a^{2} + c^{2}}{b^{2} + a^{2}}[/tex]= [tex]\frac{bc + c^{2}}{b^{2} + bc}= \frac{c(b +c)}{b(b + c)}= \frac{c}{b}[/tex] (đpcm)
Ta có: \(\dfrac{a+b}{a-b}=\dfrac{c+a}{c-a}\)
\(\Rightarrow\left(a+b\right)\left(c-a\right)=\left(c+a\right)\left(a-b\right)\)
\(\Rightarrow ac+bc-a^2-ab=ac+a^2-bc-ab\)
\(\Rightarrow bc-a^2=a^2-bc\)
\(\Rightarrow2bc=2a^2\)
\(\Rightarrow a^2=bc\left(đpcm\right)\)
Vậy...