\(\frac{2011}{2010}\), hãy tính giá trị của biểu thức :

...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 1 2016

\(\frac{1}{a+b+c}\)

11 tháng 9 2016

Giải:
Chú ý sử dụng hằng đẳng thức : 
(m+n+p)= m+ n+ p+ 2mn + 2mp + 2np
Áp dụng hằng đẳng thức trên, ta có:
ax+by+cz = 0 ⇒ (ax+by+cz)= 0

⇒a2x2+b2y2+c2z2+2ax.by+2ax.cz+2by.cz=0

⇒a2x2+b2y2+c2z2= − (2abxy+2aczx+2bcyz)

Ta lại có:
bc.(y−z)2+ac.(x−z)2+ab.(x−y)2

=bc(y2−2yz+z2)+ac(x2−2xz+z2)+ab(x2−2xy+y2)

=bcy2+bcz2−2bcyz+acx2+acz2−2acxz+abx2+aby2−2abxy

=(bcy2+bcz2+acx2+acz2+abx2+aby2)−(2abxy+2aczx+2bcyz)

=bcy2+bcz2+acx2+acz2+abx2+aby2+a2x2+b2y2+c2z2

=x2(ac+ab+a2)+y2(bc+ab+b2)+z2(bc+ac+c2)

=ax2(a+b+c)+by2(a+b+c)+cz2(a+b+c)

=(a+b+c)(a.x2+b.y2+c.z2)

Vậy:
A=a.x2+b.y2+c.z2bc.(y−z)2+ac.(x−z)2+ab.(x−y)2=ax2+by2+cz2(a+b+c)(a.x2+b.y2+c.z2)

A=1a+b+cA=1a+b+c

24 tháng 1 2017

Giải

Ta có: \(B=bc\left(y-z\right)^2+ca\left(z-x\right)^2+ab\left(x-y\right)^2\)

\(=bcy^2+bcz^2+caz^2+cax^2+abx^2+aby^2-2\left(bcyz+acxz+abxy\right)\)

\(=ax^2\left(b+c\right)+by^2\left(a+c\right)+cz^2\left(a+b\right)-2\left(bcyz+acxz+abxy\right)\)(1)

Từ giả thiết suy ra:

\(a^2x^2+b^2y^2+c^2z^2+2\left(abxy+acxz+bcyz\right)=0\) (2)

Từ (1) và (2):

\(B=ax^2\left(b+c\right)+by^2\left(a+c\right)+cz^2\left(a+c\right)-a^2x^2-b^2y^2-c^2z^2\)

\(=ax^2\left(a+b+c\right)+by^2\left(a+b+c\right)+cz^2\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(ax^2+by^2+cz^2\right)\)

Do đó:

\(A=\frac{B}{ax^2+by^2+cz^2}=a+b+c\)

8 tháng 11 2018

Đặt \(A=\frac{ax^2+by^2+cz^2}{ab\left(x-y\right)^2+bc\left(y-z\right)^2+cz\left(z-x\right)}\)

Từ ax+by+cz=0

=>(ax+by+cz)2=0

=>a2x2+b2y2+c2z2+2axby+2bycz+2czax=0

=>a2x2+b2y2+c2z2=-2(ax+by+byca+czax)

Xét mẫu thức: \(ab\left(x-y\right)^2+bc\left(y-z\right)^2+ca\left(z-x\right)^2\)

\(=ab\left(x^2-2xy+y^2\right)+bc\left(y^2-2yz+z^2\right)+ca\left(z^2-2zx+x^2\right)\)

\(=abx^2-2abxy+aby^2+bcy^2-2bcyz+bcz^2+caz^2-2cazx+cax^2\)

\(=\left(abx^2+bcz^2\right)+\left(aby^2+acz^2\right)+\left(acx^2+bcy^2\right)-2\left(abxy+bcyz+cazx\right)\)

\(=\left(aby^2+acz^2\right)+\left(abx^2+bcz^2\right)+\left(acx^2+bcy^2\right)+a^2x^2+b^2y^2+c^2z^2\)

\(=\left(a^2x^2+aby^2+acz^2\right)+\left(abx^2+b^2y^2+bcz^2\right)+\left(acx^2+bcy^2+c^2z^2\right)\)

\(=a\left(ax^2+by^2+cz^2\right)+b\left(ax^2+by^2+cz^2\right)+c\left(ax^2+by^2+cz^2\right)\)

\(=\left(a+b+c\right)\left(ax^2+by^2+cz^2\right)\)

Do đó: \(A=\frac{ax^2+by^2+cz^2}{\left(a+b+c\right)\left(ax^2+by^2+cz^2\right)}=\frac{1}{a+b+c}=\frac{1}{\frac{1}{2018}}=2018\) (dpcm)