![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Áp dụng bất đẳng thức Cauchy - Schwarz dưới dạng Engel ta có :
\(a^4+b^4\ge\frac{\left(a^2+b^2\right)^2}{2}\)
\(a^2+b^2\ge\frac{\left(a+b\right)^2}{2}=\frac{1}{2}\)
\(\Rightarrow a^4+b^4\ge\frac{\left(\frac{1}{2}\right)^2}{2}=\frac{1}{8}\) (dpcm)
Dấu "=" xảy ra \(\Leftrightarrow a=b=\frac{1}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có : \(a+b>1>0\) (1)
Bình phương hai vế: \(\left(a+b\right)^2>1\Rightarrow a^2+2ab+b^2>1\left(2\right)\)
Mặt khác : \(\left(a-b\right)^2\ge0\Rightarrow a^2-2ab+b^2\ge0\left(3\right)\)
Cộng từng vế của (2) và (3): \(2\left(a^2+b^2\right)>1\Rightarrow a^2+b^2>\dfrac{1}{2}\left(4\right)\)
Bình phương hai vế của (4) : \(a^4+2a^2b^2+b^4>\dfrac{1}{4}\left(5\right)\)
Mặt khác \(\left(a^2-b^2\right)^2\ge0\Rightarrow a^4-2a^2b^2+b^4\ge0\left(6\right)\)
cộng từng vế của (5) và (6) : \(2\left(a^4+b^4\right)>\dfrac{1}{4}\Rightarrow a^4+b^4>\dfrac{1}{8}\)(đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
ta có: a+b=1 => (a+b)2=1
a2+2ab+b2=1 (1)
Mặt khác: (a-b)2\(\ge0\Leftrightarrow a^2-2ab+b^2\ge0\) (2)
Cộng (1) và (2) vế theo vế:
2(a2+b2) > 1
a2+b2> \(\dfrac{1}{2}\)
\(\Leftrightarrow a^4+2a^2b^2+b^4>\dfrac{1}{4}\) (3)
\(\left(a^2-b^2\right)^2\ge0\Leftrightarrow a^4-2a^2b^2+b^4\ge0\) (4)
cộng (3) và (4) vế theo vế:
2(a4+b4) >\(\dfrac{1}{4}\)
=> \(a^4+b^4>\dfrac{1}{8}\left(đpcm\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
sao dễ vậy
a) Ta chọn biểu thức B làm trung gian sao cho A > B, còn B \(\ge\)\(\frac{7}{12}\).
Tách A thành 2 nhóm, mỗi nhóm 50 phân số, rồi thay mỗi phân số trong từng nhóm bằng phân số nhỏ nhất trong nhóm ấy, ta được :
A = \(\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{150}\right)+\left(\frac{1}{151}+\frac{1}{152}+...+\frac{1}{200}\right)\)
\(>\frac{1}{150}.50+\frac{1}{200}.50=\frac{1}{3}+\frac{1}{4}=\frac{7}{12}\)
b) Tách A thành bốn nhóm rồi cũng làm như trên, ta được :
A > \(\frac{25}{125}+\frac{25}{150}+\frac{25}{175}+\frac{25}{200}=\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}\right)+\frac{1}{8}=\frac{107}{210}+\frac{1}{8}>\frac{1}{2}+\frac{1}{8}=\frac{5}{8}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Áp dụng BĐT Cô si:
\(\frac{x^2}{y-1}+4\left(y-1\right)\ge2\sqrt{\frac{x^2}{y-1}.4\left(y-1\right)}=2.2x=4x\)
\(\Rightarrow\frac{x^2}{y-1}\ge4x-4y+4\)
Tương tự: \(\frac{y^2}{x-1}\ge4y-4x+4\)
Cộng theo vế 2 BĐT trên với nhau ta thu được đpcm/
Đẳng thức xảy ra khi \(x=y=2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Áp dụng BĐT AM-GM ta có:
\(\hept{\begin{cases}a+1\ge2\sqrt{a}\left(1\right)\\b+1\ge2\sqrt{b}\left(2\right)\\c+1\ge2\sqrt{c}\left(3\right)\end{cases}}\)
Nhân theo vế của (1), (2), (3) ta có:
\(\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge2^3\sqrt{abc}=8\)
Dấu "=" xảy ra khi \(a=b=c=1\)
áp dụng bất đẳng thức \(2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)ta có:
\(\left(a^8+b^8\right)\ge\frac{1}{2}\left(a^4+b^4\right)^2\)
\(\left(a^4+b^4\right)\ge\frac{1}{2}\left(a^2+b^2\right)^2\)
\(a^2+b^2\ge\frac{1}{2}\left(a+b\right)^2=1\)
từ các bất đẳng thức trên =>đpcm