Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có :\(\dfrac{a}{b}\)=\(\dfrac{b}{c}\)=\(\dfrac{c}{a}\)=\(\dfrac{a+b+c}{b+c+a}\)=1
*\(\dfrac{a}{b}\)=1 =>a=b
*\(\dfrac{b}{c}\)=1 =>b=c
*\(\dfrac{c}{a}\)=1 =>c=a
=>a=b=c
=>\(a^{670}\)+\(b^{672}\)+\(c^{673}\)/\(a^{2015}\)=\(a^{2015}\)/\(a^{2015}\)=1
nhớ like nha
Ta có:a/b=b/c=c/a (a,b,c =/ 0)
áp dụng tính chất dãy tỉ số bằng nhau
a/b=b/c=c/a=a+b+c/b+c+a=1
- a/b=1 => b=a
- b/c=1 => c=b
c/a=1 => a=c
=> a=b=c
=>a^670.b^672.c^673/a^2015
= a^670.a^672.a^673/a^2015
= a^2015/a^2015
= 1
Vậy:a^670.b^672.c^673/a^2015=1.
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
\(\frac{a}{b}=1\Rightarrow a=b;\frac{b}{c}=1\Rightarrow b=c\)
Từ đó suy ra : a = b = c
\(\Rightarrow\frac{a^{72}.b^{73}.c^{74}}{b^{219}}=\frac{b^{219}}{b^{219}}=1\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
a/b=b/c=c/a=a+b+c/a+b+c = 1
=> a=b;b=c;c=a => a=b=c
Khi đó : a^72.b^73.c^74/b^219 = b^72.b^73.b^74/b^219 = b^219/b^219 = 1
k mk nha
Đề đúng : \(M=\frac{a^{2019}+b^{2019}+c^{2019}}{a^{672}.b^{673}.c^{674}}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có : \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{c+b+a}=1\Rightarrow a=b=c\)
\(\Rightarrow M=\frac{a^{2019}+b^{2019}+c^{2019}}{a^{672}.b^{673}.c^{674}}=\frac{a^{2019}+a^{2019}+a^{2019}}{a^{672}.a^{673}.a^{674}}=\frac{3\left(a^{2019}\right)}{a^{2019}}=3\)
Vậy \(M=3\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{2a+2b+2c}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)
\(\Rightarrow\hept{\begin{cases}2a=b+c\\2b=a+c\\2c=a+b\end{cases}}\)
Vậy \(P=\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=\frac{2a+2b+2c}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+b}=2\)
bghvuyhbjb
nvtgkhihnoi
jhyubiuy7ikl
jhutgiuhyi8f
235123
5623623
cách đấy sai rồi, mk sửa lại:
a/b=b/c=c/a
Áp dụng tính chất dãy tỉ số bằng nhau, ta được:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
=>a=b=c
=>\(\frac{a^{670}\cdot b^{672}\cdot c^{673}}{a^{2015}}=\frac{a^{2015}}{a^{2015}}=1\)