\(\frac{a^{670}.b^{672}.c^...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2015

cách đấy sai rồi, mk sửa lại:

a/b=b/c=c/a

Áp dụng tính chất dãy tỉ số bằng nhau, ta được:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

=>a=b=c

=>\(\frac{a^{670}\cdot b^{672}\cdot c^{673}}{a^{2015}}=\frac{a^{2015}}{a^{2015}}=1\)

8 tháng 1 2021

ta có :\(\dfrac{a}{b}\)=\(\dfrac{b}{c}\)=\(\dfrac{c}{a}\)=\(\dfrac{a+b+c}{b+c+a}\)=1

*\(\dfrac{a}{b}\)=1 =>a=b

*\(\dfrac{b}{c}\)=1 =>b=c

*\(\dfrac{c}{a}\)=1 =>c=a

=>a=b=c

=>\(a^{670}\)+\(b^{672}\)+\(c^{673}\)/\(a^{2015}\)=\(a^{2015}\)/\(a^{2015}\)=1

nhớ like nha banh

9 tháng 1 2021

Thank you nha!yeuhihi

28 tháng 3 2020

Đa thức

23 tháng 12 2016

Ta có:a/b=b/c=c/a (a,b,c =/ 0)

áp dụng tính chất dãy tỉ số bằng nhau

a/b=b/c=c/a=a+b+c/b+c+a=1

  • a/b=1 => b=a
  • b/c=1 => c=b

c/a=1 => a=c

=> a=b=c

=>a^670.b^672.c^673/a^2015

 = a^670.a^672.a^673/a^2015

 = a^2015/a^2015

 = 1

Vậy:a^670.b^672.c^673/a^2015=1.

15 tháng 12 2017

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

\(\frac{a}{b}=1\Rightarrow a=b;\frac{b}{c}=1\Rightarrow b=c\)

Từ đó suy ra : a = b = c

\(\Rightarrow\frac{a^{72}.b^{73}.c^{74}}{b^{219}}=\frac{b^{219}}{b^{219}}=1\)

15 tháng 12 2017

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

a/b=b/c=c/a=a+b+c/a+b+c = 1

=> a=b;b=c;c=a => a=b=c

Khi đó : a^72.b^73.c^74/b^219 = b^72.b^73.b^74/b^219 = b^219/b^219 = 1

k mk nha

Đề đúng : \(M=\frac{a^{2019}+b^{2019}+c^{2019}}{a^{672}.b^{673}.c^{674}}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có : \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{c+b+a}=1\Rightarrow a=b=c\)

\(\Rightarrow M=\frac{a^{2019}+b^{2019}+c^{2019}}{a^{672}.b^{673}.c^{674}}=\frac{a^{2019}+a^{2019}+a^{2019}}{a^{672}.a^{673}.a^{674}}=\frac{3\left(a^{2019}\right)}{a^{2019}}=3\)

Vậy \(M=3\)

25 tháng 4 2017

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

      \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{2a+2b+2c}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)

\(\Rightarrow\hept{\begin{cases}2a=b+c\\2b=a+c\\2c=a+b\end{cases}}\)

Vậy \(P=\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=\frac{2a+2b+2c}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+b}=2\)

25 tháng 4 2017

bghvuyhbjb

nvtgkhihnoi

jhyubiuy7ikl

jhutgiuhyi8f

235123

5623623