K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 9 2018

Ta có: ΔABD vuông tại A
=> AB^2 + AD^2 = BD^2
=> BD = 13 (ĐL pitago) 
=> BD = BC =>Δ BDC cân tại B.
Kẻ đường cao BI
=> BI cũng là trung tuyến tam giác BDC
=> ID = IC.
Xét ΔABD vuông tại A và ΔBID vuông tại I.
=> ΔABD = ΔBID (cạnh huyền- góc nhọn)
=> BI = AD (2 góc tương ứng) 
Xét ΔBID vuông tại I có :
BD^2 = BI^2 + ID^2 (ĐL pitago)
=> ID = IC = 13^2 - 12^2 = √25 = 5.
=> ID + IC = DC = 5.2 = 10.

25 tháng 8 2020

A B C M E F

Bài làm:

a) Ta có: \(\widehat{EMF}=\widehat{EMA}+\widehat{FMA}\)

\(=\frac{1}{2}\widehat{AMB}+\frac{1}{2}\widehat{AMC}\)

\(=\frac{1}{2}\left(\widehat{AMB}+\widehat{AMC}\right)=\frac{1}{2}.180^0=90^0\)

b) Vì ME là phân giác của tam giác AMB => \(\frac{AE}{EB}=\frac{AM}{MB}=\frac{AM}{MC}\)

Vì MF là phân giác của tam giác AMC => \(\frac{FA}{FC}=\frac{AM}{MC}=\frac{AM}{MB}\)

=> \(\frac{AE}{EB}=\frac{FA}{FC}\) => EF // AB

c) BC = 20cm => BM = 10cm

Ta có: \(\frac{AE}{EB}=\frac{AM}{MB}=\frac{10}{10}=1\Rightarrow AE=EB\Rightarrow AE=\frac{1}{2}AB\)

\(\Rightarrow\frac{AE}{AB}=\frac{1}{2}\)

Mà EF // BC => \(\frac{FE}{BC}=\frac{AE}{AB}=\frac{1}{2}\Rightarrow EF=\frac{1}{2}.BC=\frac{1}{2}.20=10\left(cm\right)\)

Vậy EF = 10(cm)

trong tam giác thường à ? hay vuông ? 

2 tháng 8 2017

ta có AM là trung tuyến => M là trung điểm BC

=> MC/BC = 1/2

từ M vẽ MH//BD (H thuộc AC)

xét tam giác AMH có MH//ID (MH//BD)

=>  ID/MH = AI/AM  (hệ quả thales) 

vì I là trung điểm AM nên ID/MH = AI/AM =1/2 (1)

xét tam giác BDC có MH//BD 

=> MH/BD = MC/BC = 1/2 (hệ quả thales)  (2)

từ (1) và (2) => \(\frac{ID}{MH}.\left(\frac{MH}{BD}\right)=\frac{1}{4}\)(3)

DỄ CHỨNG MINH: AD=DH=HC (chứng minh D là tđ AH, H là tđ DC)

=> AD=1/3.AC=4cm (bn tính AC bằng pitago trong tam giác ABC)

xét tam giác ABD vuông tại A có

BD^2=AB^2+AD^2

=> BD= \(\sqrt{41}\)cm

thế vào (3) tính được ID => tính đc BI (cộng đoạn thẳng) 

5 tháng 8 2017

A B C D I M E

Gọi E là t/đ của DC

xét tg  BDC có: M là t/đ của BC(gt) vf E là t/đ của DC(cách vẽ)=> ME là đg trung bình của tg BDC=>ME//BD. Mà I thuộc BD nên ID//ME

xét tg AME có: I là t/đ của AM (gt) và ID//ME(cmt)=> D là t/đ của AE

xét tg AME có: I là t/đ của AM và D là t/đ của AE=>ID là đg trung bình của tg AME=>ID=1/2ME

đến đây tự làm nha!