
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a/
\(\overline{aba}=101.a+10b=98a+3a+7b+3b=\)
\(=\left(98a+7b\right)+3\left(a+b\right)\)
\(98a+7b⋮7;\left(a+b\right)⋮7\Rightarrow3\left(a+b\right)⋮7\)
\(\Rightarrow\overline{abc}=\left(98a+7b\right)+3\left(a+b\right)⋮7\)
b/ xem lại đề bài

a, Ta có: abcdeg = 1000. abc + deg
= 999. abc + abc + deg
= 37. 27 . abc + abc + deg
Có 37. 27. abc chia hết cho 37
và abc + deg chia hết cho 37.
Vậy abcdeg chia hết cho 37 với abc + deg chia hết cho 37.
b, Ta có: abcdeg = 1000. abc + deg
= 1001 . abc - abc + deg
= 7. 143 . abc - (abc - deg)
Có 7, 143 , abc chia hết cho 7
và abc - deg chia hết cho 7
Vậy abcdeg luôn chia hết cho 7 với abc - deg chia hết cho 7.
c, Trong 8 số tự nhiên liên tiếp thì luôn có các dạng số dư của một số khi chia cho 7 là \(\left\{0;1;2;3;4;5;6\right\}\)nhưng có tới tám số và 7 số dư thì chắc chắn trong tám số đó chắc chắn có 2 số đồng dư với nhau gọi là abc và deg. Mà abc và deg đồng dư với nhau thì hiệu abc - deg chia hết cho 7. Theo câu b thì abcdeg chia hết cho 7 với abc - deg chia hết cho 7. Suy ra abcdeg chia hết cho 7 với abc - deg chia hết cho 7.
Vậy trong 8 số tự nhiên có 3 chữ số, tồn tại hai số mà khi viết liêm tiếp nhau thì tạo thành một số có sáu chữ số chia hết cho 7.
Chúc bạn học tốt :)

a)
gọi 3 số chẵn liên tiếp là 2x,4x,6x( x là số tự nhiên)
ta có 2x+4x+6x=12x chia hết cho 6
=> Tổng của ba số chẵn liên tiếp thì chia hết cho 6
b)
gọi 3 số lẻ liên tiếp là 3k-1 , 3k , 3k+1( k là số tự nhiên)
ta có 3k-1+3k+3k+1=9k chia hết cho 3 nhưng không chia hết cho 2
=> Tổng ba số lẻ liên tiếp ko chia hết cho 6
c)
a chia hết cho b=> a=b.x(x là số tự nhiên)
b chia hết cho c=> b= c.y(y là số tự nhiên)
thay b=c.y, ta có a= c.y.x chia hết cho c
=> Nếu a chia hết cho b và b chia hết cho c thì a chia hết cho c
d)
a chia hết cho 7=> a = 7x ( x là số tự nhiên)
b chia hết cho 7=> b=7y(y là số tự nhiên)
a-b=7x7t=7(x-y) chia hết cho 7
=> Nếu a và b chia hết cho 7 có cùng số dư thì hiệu a - b chia hết cho 7
học tốt
a) Gọi 3 số chẵn liên tiếp lần lượt là 2n, 2n+2, 2n+4
Tổng của ba số chẵn liên tiếp là: 2n + 2n+2 + 2n+4
= 6n+6
= 6(n+1) chia hết cho 6
Vậy tổng của ba số chẵn liên tiếp thì chia hết cho 6

a) xyxyxy = xy . 10101 =xy . 7 .1443 => xyxyxy \(⋮\)7
b) xyyx = x.1000 + y.100 + y.10 + x = x.1001 + y.110
Vi` 1001\(⋮\) 11 => x.1001 \(⋮\)11
Vi` 110 \(⋮\)11 => y.110\(⋮\)11
=> x.1001 + y . 110\(⋮\)11 => xyyx \(⋮\)11
c) abc + bca + cab = a.100 + b.10 + c + b.100 + c.10 + a + c.100 + a.10 + b = a.111 + b.111 + c.111 = ( a + b + c ).111
Ma` 111\(⋮\)37 => ( a + b + c) \(⋮\)37 => abc + bca + cab \(⋮\)37

~~~Ủa bn j đó ơi, mk đăng nhiều đâu liên quan gì đến bạn đâu nhỉ, bạn giúp mình thì mình xin cảm ơn nhưng mong bn lần sau đừng nói vậy~~~

a) ab - ba = ( 10a + b ) - ( 10b + a ) = 10a + b - 10b - a = ( 10a - a ) + ( b - 10b ) = 9a - 9b = 9( a - b ) chia hết cho 9
=> ab - ba chia hết cho 9
b) abcabc = abc . 1001 = abc . ( 7 . 13 . 11 ) chia hết cho 11
=> abcabc chia hết cho 11
c) aaa = a . 111 = a . ( 3 . 37 ) chia hết cho 37
=> aaa chia hết cho 37

1)
a)\(B=3+3^3+3^5+3^7+.....+3^{1991}\)
\(\Leftrightarrow B=3\left(1+3^2+3^4+3^6+.....+3^{1990}\right)\)
Vì \(3\left(1+3^2+3^4+3^6+.....+3^{1990}\right)\)chia hết cho 3 nên \(B⋮3\)
\(B=3+3^3+3^5+3^7+.....+3^{1991}\)
\(\Leftrightarrow B=\left(3+3^3+3^5+3^7\right)+.....+\left(3^{1988}+3^{1989}+3^{1990}+3^{1991}\right)\)
\(\Leftrightarrow B=3\left(1+3^2+3^4+3^6\right)+.....+3^{1988}\left(1+3^2+3^4+3^6\right)\)
\(\Leftrightarrow B=3.820+.....+3^{1988}.820\)
\(\Leftrightarrow B=3.20.41+.....+3^{1988}.20.41\)
Vì \(3.20.41+.....+3^{1988}.20.41\) chia hết cho 41 nên \(B⋮41\)

\(\overline{abc}=100a+10b+c=98a+2a+7b+3b+c\)
\(=\left(98a+7b\right)+\left(a+b+c\right)+\left(a+b+b\right)\)
mà b=c
\(\Rightarrow\left(a+b+b\right)=a+b+c\)
vì \(98a⋮7,7b⋮7,\left(a+b+c\right)=7⋮7\)
vậy ...
P/S; bn ghi sai đề r thì pk