\(\frac{xy}{4x^2-y^2}\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2019

Từ gt \(4x^2+y^2=5xy\)

\(\Leftrightarrow4x^2-4xy+y^2-xy=0\)

\(\Leftrightarrow4x\left(x-y\right)+y\left(y-x\right)=0\)

\(\Leftrightarrow4x\left(x-y\right)-y\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(4x-y\right)=0\)

\(2x>y>0\Rightarrow4x>y\Leftrightarrow4x-y>0\)

\(\Rightarrow x-y=0\Leftrightarrow x=y\)

Thay vào M:

\(M=\frac{xy}{4x^2-y^2}=\frac{x^2}{4x^2-x^2}=\frac{x^2}{3x^2}=\frac{1}{3}\)

30 tháng 4 2019

ta có :

4x2+y2=5xy

⇔ 4x2+y2-5xy=0

⇔ 4x2 - 4xy + y2-xy=0

⇔4x(x-y) - y(x-y) = 0

⇔ (x - y)(4x-y)=0

vì 2x > y > 0 nên 4x-y>0

⇒ x-y=0 ⇒ x = y

⇒M= \(\frac{xy}{4x^2-y^2}\)=\(\frac{x^2}{4x^2-x^2}=\frac{x^2}{3x^2}=\frac{1}{3}\)

vậy M = \(\frac{1}{3}\)

AH
Akai Haruma
Giáo viên
26 tháng 11 2017

Lời giải:

Ta có \(4x^2-5xy+y^2=0\)

\(\Leftrightarrow (4x-y)(x-y)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}4x-y=0\\x-y=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4x=y\\x=y\end{matrix}\right.\)

Vì \(2x>y>0\Rightarrow \) nếu \(4x=y\Leftrightarrow 2x>4x>0\) (vô lý)

Do đó \(x=y\). Thay vào biểu thức A

\(A=\frac{xy}{4x^2-y^2}=\frac{x^2}{4x^2-x^2}=\frac{1}{3}\)

10 tháng 11 2018

Hỏi đáp Toán

2 tháng 1 2017

2x2+2y2=5xy <=> 2(x+y)2=9xy => x+y=\(\sqrt{\frac{9}{2}xy}\)

Và: 2(x-y)2=xy => x-y=\(\sqrt{\frac{1}{2}xy}\). Thay vào K ta được:

K=\(\frac{\sqrt{\frac{9}{2}xy}}{\sqrt{\frac{1}{2}xy}}=\sqrt{9}\)=3

2x2+2y2=5xy

<=>2x2-5xy+2y2=0

<=>(2x2-4xy)-(xy-2y2)=0

<=>2x(x-2y)-y(x-2y)=0

<=>(x-2y).(2x-y)=0

<=> (x-2y)=0 hoặc 2x-y=0

Nếu x-2y=0 =>x=2y

=>E=\(\frac{x+y}{x-y}\)=\(\frac{2y+y}{2y-y}\)=\(\frac{3y}{y}\)=3

Nếu 2x-y=0 =>2x=y

=>E=\(\frac{x+y}{x-y}\)=\(\frac{x+2x}{x-2x}\)=\(\frac{3x}{-1x}\)= -3

7 tháng 3 2020

2x^2 + 2y^2 = 5xy

<=> 2x^2 + 2y^2 - 5xy = 0

<=> 2x^2  - 4xy + 2y^2 - xy  = 0

<=> 2x(x - 2y) - y(x - 2y) = 0

<=> (2x - y)(x - 2y) = 0

<=> 2x = y hoặc x = 2y

thay vào là xong

26 tháng 11 2017

Cần tìm ra gt của A là số nguyên à bạn?

27 tháng 7 2016

a) x2(5x3 – x - \(\frac{1}{2}\)) = x2. 5x3 + x2 . (-x) + x2 . ( \(-\frac{1}{2}\) )

= 5x5 – x3\(\frac{1}{2}\)x2

b) (3xy – x2 + y) \(\frac{2}{3}\)x2y = \(\frac{2}{3}\)x2y . 3xy + \(\frac{2}{3}\)x2y . (- x2) + \(\frac{2}{3}\)x2y .

y                                    = 2x3y2\(\frac{2}{3}\)x4y + \(\frac{2}{3}\)x2y2

c) (4x3– 5xy + 2x)( \(-\frac{1}{2}\)xy) = \(-\frac{1}{2}\)xy . 4x3 + ( \(-\frac{1}{2}\)xy) . (-5xy) + ( \(-\frac{1}{2}\)xy) . 2x

= -2x4y + \(\frac{5}{2}\)x2y2 – x2y.

10 tháng 3 2017

ta có:4x^2 + y^2=5xy => 4x^2+y^2-5xy=0 => 4x^2 - 4xy -xy + y^2=0 => (y-x)(y-4x)=0 => y=x ( thỏa mãn điều kiện)

                                                                                                                           => y=4x ( ko thỏa mãn điều kiện)

ta có: P=2016xy/4x^2-y^2                

         P=2016x^2/4x^2-x^2

        P=2016x^2/3x^2

        P=672

9 tháng 3 2017

 4 x2+ y2 = 5xy =>  4x2 - 4xy+ y2 =xy 

                        => (2x-y)^2 =xy  (1)

4 x2-y^2 = (2x-y)(2x+y)  (2)

  thay (1) vào (2) P ta có 

 P = 2016xy/4x^2−y^2 => P=2016(2x-y)^2/(2x-y)(2x+y)  =>P=2016(2x-y)/2x+y