\(y=x^2-2mx+1\) trên [0;3]

giúp mình vs nha

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
23 tháng 8 2017

Lời giải:

\(y=x^2-2mx+1\Rightarrow y'=2x-2m=0\Leftrightarrow x=m\)

Xét các TH sau:

\(m<0\)

§3. Giá trị lớn nhất và giá trị nhỏ nhất của hàm số

Từ bảng BT ta có:

\(f(0)=1=f(x)_{\min}\)

\(f(3)=10-6m=f(x)_{\max}\)

TH2: \(0\leq m\leq 3\)

§3. Giá trị lớn nhất và giá trị nhỏ nhất của hàm số

Từ bảng trên suy ra:

\(f_{\min}=f(m)=1-m^2\)

\(f_{\max}=1\) nếu \(3\geq m\geq \frac{3}{2}\)

\(f_{\max}=10-6m\) nếu \(0\leq m< \frac{3}{2}\)

TH3: \(m>3\). Tương tự TH1, ta thu được

\(f_{\max}=f(0)=1\)

\(f_{\min}=f(3)=10-6m\)

24 tháng 8 2017

cảm ơn bạn nhiều nha

AH
Akai Haruma
Giáo viên
18 tháng 2 2017

Giải:

(Hàm số không có tập xác định bao gồm \(0\) nên phải là \((0,3]\))

\(f'(x)=6x^2-\frac{6}{x^3}=\frac{6(x^5-1)}{x^3}=0\Leftrightarrow \) \(x=1\)

Bây giờ xét:

\(f(1)=10\)

\(f(3)=\frac{178}{3}\)

Vậy \(\left\{\begin{matrix} f_{\min}=10\Leftrightarrow x=1\\ f_{\max}=\frac{178}{3}\Leftrightarrow x=3\end{matrix}\right.\)

NV
4 tháng 8 2020

Hàm đã cho là bậc nhất trên bậc nhất nên đơn điệu trên mọi khoảng xác định

Hàm liên tục trên \(\left[0;3\right]\Rightarrow\) đạt min và max lần lượt tại 2 đầu mút

\(\Rightarrow\min\limits_{\left[0;3\right]}f\left(x\right)+\max\limits_{\left[0;3\right]}f\left(x\right)=f\left(0\right)+f\left(3\right)\)

\(\Leftrightarrow-m+\frac{3-m}{4}=-2\)

\(\Leftrightarrow-5m=-11\Rightarrow m=\frac{11}{5}\)

NV
6 tháng 8 2020

1.

\(y'=3x^2-3=0\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

\(y\left(0\right)=5;\) \(y\left(1\right)=3;\) \(y\left(2\right)=7\)

\(\Rightarrow y_{min}=3\)

2.

\(y'=4x^3-8x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-\sqrt{2}\end{matrix}\right.\)

\(f\left(-2\right)=-3\) ; \(y\left(0\right)=-3\) ; \(y\left(-\sqrt{2}\right)=-7\) ; \(y\left(1\right)=-6\)

\(\Rightarrow y_{max}=-3\)

3.

\(y'=\frac{\left(2x+3\right)\left(x-1\right)-x^2-3x}{\left(x-1\right)^2}=\frac{x^2-2x-3}{\left(x-1\right)^2}=0\Rightarrow x=-1\)

\(y_{max}=y\left(-1\right)=1\)

4.

\(y'=\frac{2\left(x^2+2\right)-2x\left(2x+1\right)}{\left(x^2+2\right)^2}=\frac{-2x^2-2x+4}{\left(x^2+2\right)^2}=0\Rightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

\(y\left(1\right)=1\) ; \(y\left(-2\right)=-\frac{1}{2}\Rightarrow y_{min}+y_{max}=-\frac{1}{2}+1=\frac{1}{2}\)

NV
1 tháng 8 2020

1. Không rõ đề

2.

\(y'=\sqrt{x^2+3}+\frac{x\left(x-6\right)}{\sqrt{x^2+3}}=\frac{2x^2-6x+3}{\sqrt{x^2+3}}< 0;\forall x\in\left[1;2\right]\)

\(\Rightarrow\) Hàm nghịch biến trên \(\left[1;2\right]\Rightarrow y_{max}=y\left(1\right)=-10\)

3.

\(y'=3x^2-4mx=0\Rightarrow\left[{}\begin{matrix}x=0\\x=\frac{4m}{3}\end{matrix}\right.\)

Ta có: \(y\left(1\right)=3-3m\) ; \(y\left(3\right)=29-19m\)

TH1: \(\frac{4m}{3}\le1\Rightarrow m\le\frac{3}{4}\) khi đó hàm đồng biến trên \(\left[1;3\right]\Rightarrow y_{max}=y\left(3\right)\)

\(\Rightarrow29-19m=6\Leftrightarrow m=\frac{23}{19}>\frac{3}{4}\left(ktm\right)\)

TH2: \(\frac{4m}{3}\ge3\Rightarrow m\ge\frac{9}{4}\)

Khi đó hàm nghịch biến trên \(\left[1;3\right]\Rightarrow y_{max}=y\left(1\right)\)

\(\Rightarrow3-3m=6\Rightarrow m=-1< \frac{9}{4}\left(ktm\right)\)

TH3: \(1< \frac{4m}{3}< 3\Rightarrow\frac{3}{4}< m< \frac{9}{4}\)

Hàm nghịch biến trên \(\left(1;\frac{4m}{3}\right)\) và đồng biến trên \(\left(\frac{4m}{3};3\right)\)

\(\Rightarrow\) Hàm đạt GTLN tại \(x=1\) hoặc \(x=3\)

\(y\left(1\right)=3-3m=6\Rightarrow m=-1\notin\left(\frac{3}{4};\frac{9}{4}\right)\) (loại)

\(y\left(3\right)=29-19m=6\Rightarrow m=\frac{23}{19}\in\left(\frac{3}{4};\frac{9}{4}\right)\)

Vậy \(m=\frac{23}{19}\)

31 tháng 3 2017

a) y= -x4 + 2mx2 – 2m + 1(Cm). Tập xác định: D = R

y ‘ = -4x3 + 4mx = -4x (x2 – m)

- Với m ≤ 0 thì y’ có một nghiệm x = 0 và đổi dấu + sang – khi qua nghiệm này. Do đó hàm số có một cực đại là x = 0

Do đó, hàm số có 2 cực trị tại x = ± √m và có một cực tiểu tại x = 0

b) Phương trình -x4 + 2mx2 – 2m + 1 = 0 luôn có nghiệm x = ± 1 với mọi m nên (Cm) luôn cắt trục hoành.

c) Theo lời giải câu a, ta thấy ngay:

với m > 0 thì đồ thị (Cm) có cực đại và cực tiểu.


9 tháng 2 2017

chữa lại nhoé!!:)

Xét trên đoạn \(\left[-2;2\right]\) ta có : \(f'\left(x\right)\)=\(3x^2+6x-9\)

\(f'\left(x\right)=0\Leftrightarrow\left[\begin{matrix}x=-3\left(l\right)\\x=1\end{matrix}\right.\)

Ta có :\(f\left(2\right)=23,f\left(1\right)=-4,f\left(2\right)=3\)

Vậy \(max\) \(f=\left(x\right)=f\left(-2\right),\) \(minf'\left(x\right)=f\left(1\right)=4\left[-2;2\right]\)

8 tháng 2 2017

Xét trên đoạn \(\left[-2;2\right]\) ta có:\(f\left(x\right)=3x^2+6x-9\)

\(f\left(x\right)=0\Leftrightarrow\left[\begin{matrix}x=-3\left(l\right)\\x=1\end{matrix}\right.\)

Ta có:\(f\left(-2\right)=23,f\left(1\right)=-4,f\left(2\right)=3\)

Vậy \(max\)f =(x) = \(f\left(-2\right)=23,min\) f(x)= \(f\left(1\right)=4\)[-2;2]

AH
Akai Haruma
Giáo viên
23 tháng 8 2017

Lời giải:

ĐKXĐ: \(-2\leq x\leq 5\)

Ta có:

\(y=\sqrt{-x^2+4x+21}-\sqrt{-x^2+3x+10}\)

\(\Rightarrow y'=\frac{4-2x}{2\sqrt{-x^2+4x+21}}-\frac{3-2x}{2\sqrt{-x^2+3x+10}}\)

PT \(y'=0\) có nghiệm \(x=\frac{1}{3}\)

Lập bảng biến thiên.

Thấy \(y(-2)=3\);\(y(5)=4\);\(y\left (\frac{1}{3}\right)=\sqrt{2}\)

Do đó, \(\left\{\begin{matrix} y_{\max}=4\Leftrightarrow x=5\\ y_{\min}=\sqrt{2}\Leftrightarrow x=\frac{1}{3}\end{matrix}\right.\)

23 tháng 8 2017

thank nha

6 tháng 8 2020

tóm lại kết quả là 2 hay 1 vậy bạn

NV
6 tháng 8 2020

4.

\(xy+y=2\Leftrightarrow xy=2-y\Rightarrow x=\frac{2-y}{y}=\frac{2}{y}-1\)

\(\Rightarrow P=x+y^2=y^2+\frac{2}{y}-1\)

\(\Rightarrow P=y^2+\frac{1}{y}+\frac{1}{y}-1\ge3\sqrt[3]{\frac{y^2}{y.y}}-1=2\)

\(\Rightarrow P_{min}=2\) khi \(x=y=1\)

12 tháng 6 2017

câu này bấm máy cho nhanh bạn ơi, giải kia k chắc lỡ sai uổn lắm..