\(1-sin(x)\)

b) 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(a)\)

\(1-sin\left(x\right)\)

\(=sin^2\frac{x}{2}+cos^2\frac{x}{2}-2.sin\frac{x}{2}.cos\frac{x}{2}\)

\(=\left(sin\frac{x}{2}-cos\frac{x}{2}\right)^2\)

\(b)\)

\(1+sin\left(x\right)\)

\(=sin^2\frac{x}{2}+cos^2\frac{x}{2}+2.sin\frac{x}{2}.cos\frac{x}{2}\)

\(=\left(sin\frac{x}{2}+cos\frac{x}{2}\right)^2\)

\(d)\)

\(1+2cos\left(x\right)\)

\(=2\left(\frac{1}{2}+cosx\right)\)

\(=2\left(cos60^o+cosx\right)\)

\(=4\left(cos\frac{60^o+x}{2}cos\frac{60^o-x}{2}\right)\)

\(=4cos\left(30^o+\frac{x}{2}\right)cos\left(30^o-\frac{x}{2}\right)\)

NV
26 tháng 3 2019

Giả sử các biểu thức đều xác định:

\(\frac{1+sin^2a}{1-sin^2a}=\frac{1+sin^2a}{cos^2a}=\frac{1}{cos^2a}+tan^2a=1+tan^2a+tan^2a=1+2tan^2a\)

\(tan^2a-sin^2a=sin^2a\left(\frac{1}{cos^2a}-1\right)=sin^2a\left(\frac{1-cos^2a}{cos^2a}\right)=sin^2a.\frac{sin^2a}{cos^2a}=tan^2a.sin^2a\)

\(\frac{cosa}{1+sina}+tana=\frac{cosa\left(1-sina\right)}{\left(1+sina\right)\left(1-sina\right)}+\frac{sina.cosa}{cos^2a}=\frac{cosa-sina.cosa}{1-sin^2a}+\frac{sina.cosa}{cos^2a}\)

\(=\frac{cosa-sina.cosa+sina.cosa}{cos^2a}=\frac{cosa}{cos^2a}=\frac{1}{cosa}\)

\(\frac{tanx}{sinx}-\frac{sinx}{cotx}=\frac{tanx}{sinx}-sinx.tanx=tanx\left(\frac{1}{sinx}-sinx\right)=\frac{sinx}{cosx}\left(\frac{1-sin^2x}{sinx}\right)=\frac{sinx.cos^2x}{cosx.sinx}=cosx\)

NV
20 tháng 6 2020

\(A=\frac{\frac{sin^2x}{cos^2x}+\frac{sinx.cosx}{cos^2x}+\frac{5}{cos^2x}}{\frac{3sin^2x}{cos^2x}-\frac{2cos^2x}{cos^2x}}=\frac{tan^2x+tanx+5\left(1+tan^2x\right)}{3tan^2x-2}\)

\(=\frac{\left(-3\right)^2-3+5\left[1+\left(-3\right)^2\right]}{3.\left(-3\right)^2-2}=...\)

30 tháng 3 2017

a) 1 - sinx = sin - sinx = 2cossin

= 2cossin

a) 1 + sinx = sin + sinx = 2sincos

c) 1 + 2cosx = 2( + cosx) = 2(cos + cosx) = 4coscos

d) 1 - 2sinx = 2( - sinx) = 2(sin - sinx) = 4cossin

23 tháng 9 2020

1.

Lấy \(x_1;x_2\in\left(-4;0\right)\)

Ta có: \(y_1-y_2=-2x^2_1-7-\left(-2x^2_2-7\right)=-2\left(x_1-x_2\right)\left(x_1+x_2\right)\)

Xét \(I=\frac{y_1-y_2}{x_1-x_2}=-2\left(x_1+x_2\right)\)

Do \(x_1;x_2\in\left(-4;0\right)\Rightarrow-8< x_1+x_2< 0\Rightarrow I>0\)

\(\Rightarrow\) Hàm số đồng biến trên \(\left(-4;0\right)\)

Lấy \(x_1;x_2\in\left(3;10\right)\)

Xét \(I=\frac{y_1-y_2}{x_1-x_2}=-2\left(x_1+x_2\right)\)

Do \(x_1;x_2\in\left(3;10\right)\Rightarrow6< x_1+x_2< 20\Rightarrow I< 0\)

\(\Rightarrow\) Hàm số nghịch biến trên \(\left(3;10\right)\)

23 tháng 9 2020

2.

Hàm số \(y=mx^2+2x+1\left(P\right)\)

\(A\left(-1;3\right)\in\left(P\right)\Leftrightarrow3=m-2+1\Leftrightarrow m=4\)

Vậy \(m=4\)

a: \(f\left(-x\right)=\dfrac{-x^5+x}{\sqrt{\left(-x\right)^2+\left|-x\right|}}=-f\left(x\right)\)

=>f(x) lẻ

b: \(f\left(-x\right)=\left(\left|9+2x\right|-\left|9-2x\right|\right)\left(-x+5x^3\right)\)

\(=f\left(x\right)\)

=>f(x) chẵn

c: \(f\left(-x\right)=\dfrac{\left|3+x\right|-\left|3-x\right|}{\left(-x\right)^4+1}=-f\left(x\right)\)

=>f(x) lẻ

14 tháng 6 2018

điều kiện : x >-1/2

⇒ 2x + 1 >0 ⇒ \(\dfrac{4}{2x+1}\) >0

ap dụng bất đẳng thức Cauchy ta có:

f(x) ≥ \(2\sqrt{\left(2x+1\right).\dfrac{4}{2x+1}}\) = 4

⇒ Min f(x) = 4. Dấu '' = '' xảy ra khi và chỉ khi

2x + 1 = \(\dfrac{4}{2x+1}\) ⇒ (2x +1 )2 = 4 ⇒ x = \(\dfrac{1}{2}\)

VẬY ĐÁP ÁN LÀ C