\(B=\frac{7X-8}{2X-3}\)

TÍNH GIÁ trị lớn nhất của B 

<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6 2018

Ta có:

\(B=\frac{7x-8}{2x-3}\)                       \(\left(2x-3\ne0\right)\)

\(B=\frac{2\left(7x-8\right)}{2\left(2x-3\right)}\)

\(B=\frac{2x.7-16}{2\left(2x-3\right)}\)

\(B=\frac{2x.7-21+5}{2\left(2x-3\right)}\)

\(B=\frac{7\left(2x-3\right)}{2\left(2x-3\right)}+\frac{5}{2\left(2x-3\right)}\)

\(B=\frac{7}{2}+\frac{5}{2\left(2x-3\right)}\)

B sẽ có GTLN khi \(\frac{5}{2\left(2x-3\right)}\) lớn nhất

+) Trường hợp 1 : \(2\left(2x-3\right)< 0\)   (1)

Từ (1) \(\Rightarrow\frac{5}{2\left(2x-3\right)}< 0\)(loại vì trường hợp này \(\frac{5}{2\left(2x-3\right)}\) lớn nhất)

+) Trường hợp 2:\(2\left(2x-3\right)>0\)          (2)

Từ (2) \(\Rightarrow2x-3>0\)

Để \(\frac{5}{2\left(2x-3\right)}\) lớn nhất thì \(2\left(2x-3\right)\) phải nhỏ nhất    \(\left(2\left(2x-3\right)>0\right)\)

\(\Rightarrow2x-3\) nhỏ nhất ; \(2x-3>0\) ,\(2x-3\in Z\)

\(\Rightarrow2x-3=1\Rightarrow x=2\in Z\)(thỏa mãn)

GTLN của \(B=\frac{7}{2}+\frac{5}{2\left(2.2-3\right)}=\frac{7}{2}+\frac{5}{2}=6\)

Vậy GTLN của B là 6

15 tháng 6 2018

Ta có: \(B=\frac{7x-8}{2x-3}=\frac{\frac{7}{2}.\left(2x-3\right)-\frac{37}{2}}{2x-3}=\frac{\frac{7}{2}.\left(2x-3\right)}{2x-3}+\frac{\frac{-37}{2}}{2x-3}\)

                                                                             \(=\frac{7}{2}+\frac{\frac{-37}{2}}{2x-3}\ge\frac{7}{2}\)

Vậy Bmax = 7/2 

25 tháng 3 2020

a) Sửa: C=(x+2)2+\(\left(y-\frac{1}{5}\right)^2\)+10

Ta có: \(\hept{\begin{cases}\left(x+2\right)^2\ge0\forall x\\\left(y-\frac{1}{5}\right)^2\ge0\forall y\end{cases}}\)

\(\Rightarrow\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2+10\ge10\forall x;y\)

hay C \(\ge10\). Dấu "=" \(\Leftrightarrow\hept{\begin{cases}\left(x+2\right)^2=0\\\left(y-\frac{1}{5}\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+2=0\\y-\frac{1}{5}=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-2\\y=\frac{1}{5}\end{cases}}}\)

27 tháng 3 2020
Cam on ban
11 tháng 4 2018

a/ Ta có \(\left|\frac{5}{6}-2x\right|=\frac{7}{8}\)

=> \(\orbr{\begin{cases}\frac{5}{6}-2x=\frac{7}{8}\\\frac{5}{6}-2x=\frac{-7}{8}\end{cases}}\)=> \(\orbr{\begin{cases}-2x=\frac{1}{24}\\-2x=\frac{-41}{24}\end{cases}}\)=> \(\orbr{\begin{cases}x=-\frac{1}{48}\\x=\frac{41}{48}\end{cases}}\)

Vậy \(x=-\frac{1}{48}\)hoặc \(x=\frac{41}{48}\)thì \(\left|\frac{5}{6}-2x\right|=\frac{7}{8}\)

b/ Ta có \(B=5x^2-7y+6\)

Thay \(x=\frac{-1}{5}\)và \(y=\frac{-3}{7}\)vào biểu thức B, ta có:

\(5\left(-\frac{1}{5}\right)^2-7\left(-\frac{3}{7}\right)+6\)\(\frac{1}{5}-\left(-3\right)+6=\frac{1}{5}+3+6=\frac{1}{5}+9=\frac{46}{5}\)

Vậy giá trị của biểu thức B bằng \(\frac{46}{5}\)khi \(x=\frac{-1}{5}\)và \(y=\frac{-3}{7}\).

11 tháng 4 2018

a/ Ta có  6 5 − 2x = 8 7 =>  6 5 − 2x = 8 7 6 5 − 2x = 8 −7 =>  −2x = 24 1 −2x = 24 −41

=>  x = − 48 1 x = 48 41 Vậy x = − 48 1 hoặc x = 48 41 thì  6 5 − 2x = 8 7

b/ Ta có B = 5x 2 − 7y + 6 Thay x = 5 −1 và y = 7 −3 vào biểu thức B, ta có: 5 − 5 1 2 − 7 − 7 3 + 6=  5 1 − −3 + 6 = 5 1 + 3 + 6 = 5 1 + 9 = 5 46

Vậy giá trị của biểu thức B bằng  5 46 khi x = 5 −1 và y = 7 −3 .

20 tháng 2 2019

Thay x = -1/3 vào biểu thức A,ta có :

\(\left(-\frac{1}{3}\right)^3-5.\left(-\frac{1}{3}\right)^2+10\)

\(=\left(-\frac{1}{27}\right)-5.\frac{1}{9}+10\)

\(=\left(-\frac{1}{27}\right)-\frac{5}{9}+10\)

\(-\frac{16}{27}+10=\frac{286}{27}\)

Vậy ...

20 tháng 2 2019

Thay x = -0,5 vào biểu thức B ,ta có :

\(-0,5^3-4\left(-0,5\right)^2-7.\left(-0,5\right)-10\)

\(=-0,125-4.\left(-0,25\right)-3,7-10\)

\(=-0,125-\left(-1\right)-3,7-10\)

\(=\text{0.875-2,7-10}\)

\(=\text{-12.825}\)

20 tháng 8 2019

\(A=\frac{27-2x}{12-x}=\frac{2\left(12-x\right)+3}{12-x}=2+\frac{3}{12-x}\)

Để A lớn nhất thì  \(\frac{3}{12-x}\) lớn nhất

\(\Leftrightarrow12-x\) nhỏ nhất

Với \(x>12\Rightarrow12-x< 0\Rightarrow A\) là số âm

Với \(x< 12\Rightarrow12-x>0\Rightarrow A_{max}=5\Leftrightarrow x=11\)

A = \(\frac{27-2X}{12-X}\)\(\frac{24-2X+3}{12-X}\)\(\frac{\left(12-X\right)\cdot2+3}{12-X}\)=  2 + \(\frac{3}{12-X}\)

Lúc này biểu thức A lớn nhất khi \(\frac{3}{12-x}\) đạt GTLN

Hay 12-x là số tự nhiên nguyên nguyên dương nhỏ nhất là 1 hay x = 11

Lúc này bt A có giá trị là 2+ \(\frac{3}{1}\)\(2+3=5\)

Vậy bt A đạt GTLN là 5 khi x = 11

30 tháng 11 2018

a)  x=2 :y thuộc {9: -9 }

b) đặt k nha bạn kq = 4/ 5

k nha

30 tháng 11 2018

1, \(\left|2x-27\right|^{2011}+\left(3y+10\right)^{2012}=0\)

Vì \(\hept{\begin{cases}\left|2x-27\right|^{2011}\ge0\forall x\\\left(3y+10\right)^{2012}\ge0\forall x\end{cases}\Rightarrow VT\ge0\forall x}\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2x-27=0\\3y+10=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{27}{2}\\y=-\frac{10}{3}\end{cases}}}\)
Vậy ...................

14 tháng 10 2018

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\Rightarrow a=b=c.\)

\(\Rightarrow M=\frac{a^{2013}b^2c}{c^{2016}}=\frac{c^{2013+2}}{c^{2016}}=\frac{c^{2016}}{c^{2016}}=1\)

14 tháng 10 2018

a/b=b/c=c/a

Áp dụng t/c dãy tỉ số bằng nhau ta có :

a/b=b/c=c/a=a+b+c/b+c+a=1 

suy ra a/b =b/c=c/a=1 suy ra a=b=c 

suy ra M =1

8 tháng 11 2018

\(Tacó\)

\(4n-3⋮n+1\Rightarrow4\left(n+1\right)⋮n+1\Rightarrow4n+4⋮n+1\)

\(\Rightarrow4n+4-\left(4n-3\right)⋮n+1\Rightarrow7⋮n+1\Rightarrow n+1\in\left\{\pm1;\pm7\right\}\)

\(\Rightarrow n\in\left\{-2;0;6;-8\right\}\)

b, \(K=\frac{2}{3+4n}\)

\(\Rightarrow GTLN\left(K\right)\Leftrightarrow n=0\Rightarrow\frac{2}{3+4n}=\frac{2}{3}\Rightarrow GTLN\left(K\right)=\frac{2}{3}\)

20 tháng 10 2020

a) \(A=\frac{1}{\sqrt{x}+10}\)     \(\left(x\ge0\right)\)

có \(\sqrt{x}\ge0\)=> \(\sqrt{x}+10\ge10\)

A lớn nhất <=> \(\sqrt{x}+10\)nhỏ nhất  <=> \(\sqrt{x}+10=10\)<=> \(\sqrt{x}=0\)<=> x = 0

Vậy \(maxA=\frac{1}{\sqrt{0}+10}=\frac{1}{10}\)

20 tháng 10 2020

b) \(B=\frac{4}{2-\sqrt{x}}\)         \(\left(x\ge0;x\ne4\right)\)

ta có: \(\sqrt{x}\ge0\)với mọi x 

=> \(-\sqrt{x}\le0\Leftrightarrow2-\sqrt{x}\le2\)

B đạt GLNN khi \(2-\sqrt{x}\)lớn nhất \(\Leftrightarrow2-\sqrt{x}=2\Leftrightarrow\sqrt{x}=0\Leftrightarrow x=0\)

vậy \(minB=\frac{4}{2-\sqrt{0}}=\frac{4}{2}=2\)