\(B=\frac{2x^2-2}{x^3+x^2-x-1}\)      (x khác 0 hoặc  +_ 1)  Tìm x thuộc Z ,B thuộc Z

...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2018

\(B=\frac{2x^2-2}{x^3+x^2-x-1}=\frac{2\left(x-1\right)\left(x+1\right)}{x^2\left(x+1\right)-\left(x+1\right)}=\frac{2\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)^2}\)

\(ĐKXĐ:x\ne\pm1\)(1)

\(\)\(B=\frac{2}{x+1}\)

Để B thuộc Z => \(2⋮x+1\left(x\in Z\right)\)

\(\Rightarrow\left(x+1\right)\inƯ\left(2\right)=\left(1;-1;2;-2\right)\)

\(\Rightarrow x\in\left(0;-2;1;-3\right)\)(2)

từ (1) và (2)

\(\Rightarrow x\in\left(0;-2;-3\right)\)

5 tháng 6 2020

2) \(x^4-x^2+2x+2\)

\(=x^2\left(x-1\right)\left(x+1\right)+2\left(x+1\right)\)

\(=x^2\left(x-1+2\right)\left(x+1\right)\)

\(=x^2\left(x+1\right)^2\)

\(=\left(x^2+x\right)^2\)

Vậy \(x^4-x^2+2x+2\)là số chính phương với mọi số nguyên x

28 tháng 3 2020

\(A=\frac{1}{x+3}:\left(\frac{x-2}{\left(x+3\right)}+\frac{x+3}{x-2}+\frac{11x+8}{\left(x+3\right)\left(x-2\right)}\right)\)

\(A=\frac{1}{x+3}:\left(\frac{x^2-4x+4+x^2+6x+9+11x+8}{\left(x+3\right)\left(x-2\right)}\right)=\frac{1}{x+3}:\frac{2x^2+13x+21}{\left(x+3\right)\left(x-2\right)}=\frac{x-2}{2x^2+13x+21}\)

27 tháng 12 2015

không có cách khác 

tick nha

27 tháng 12 2015

ko có cách khác , mk cũg lm tương tự như thế

1 tháng 5 2020

Bài 1:

Đặt a=x-1; b=y-1; c=z-1. Khi đó a;b;c\(\in\)[-1;1], a+b+c=0 và 

\(P=\left(a+1\right)^3+\left(b+1\right)^3+\left(c+1\right)^3-3abc\)

\(=a^3+b^3+c^3-3abc+3\left(a^2+b^2+c^2\right)+3\left(a+b+c\right)+3\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)+3\left(a^2+b^2+c^2\right)+3\left(a+b+c\right)+3\)

\(=3\left(a^2+b^2+c^2\right)+3\)

Ta có: \(0\le a^2+b^2+c^2\le2\)

Từ đây ta dễ thấy Min P=3 đạt được khi x=y=z=1

1 tháng 5 2020

Ta xét tống T của 3 số x(1-y);y(1-x);z(1-x)

Ta có T=x(1-y)+y(1-z)+z(1-x)=x+y+z-xy-xz-yz

Theo giả thiết xyz=(1-x)(1-y)(1-z)=1-(x+y+z-xy-xz-yz)-xyz

=> 2xyz=1-T => T=1-2xyz

Nhưng x2y2z2 =[x(1-x)][y(1-y)][z(1-z)]\(\le\frac{1}{4}\cdot\frac{1}{4}\cdot\frac{1}{4}=\frac{1}{64}\)

=> xyz\(\le\)\(\frac{1}{8}\Rightarrow2xy\le\frac{1}{4}\)

Vậy \(T\ge1-\frac{1}{4}=\frac{3}{4}\)

Vậy \(T\ge\frac{3}{4}\)nên trong 3 số x(1-x), y(1-y), z(1-z) có ít nhất một trong 3 số đó \(\ge\frac{1}{4}\left(đpcm\right)\)

6 tháng 11 2016

mk ko biết làm 

xin lỗi bn nhae

xin lỗi vì đã ko giúp được bn

chcus bn học gioi!

nhae@@@

6 tháng 11 2016

mình không biết làm

tk nhé@@@@@@@@@@@@@@@@@@@@

LOL

hihi