Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{19}>\frac{1}{16}+\frac{1}{16}+\frac{1}{16}+...+\frac{1}{16}=\frac{16}{16}=1\)
\(B=\frac{1}{4}+\left(\frac{1}{5}+\frac{1}{6}+...+\frac{1}{9}\right)+\left(\frac{1}{10}+\frac{1}{11}+...+\frac{1}{19}\right)\)
Xét \(\frac{1}{5}+\frac{1}{6}+...+\frac{1}{9}>\frac{1}{9}+\frac{1}{9}+...+\frac{1}{9}=\frac{1}{9}.5=\frac{5}{9}>\frac{1}{2}\)
và \(\frac{1}{10}+\frac{1}{11}+...+\frac{1}{19}>\frac{1}{19}+\frac{1}{19}+...+\frac{1}{19}=\frac{1}{19}.10=\frac{10}{19}>\frac{1}{2}\)
Do đó \(B>\frac{1}{4}+\frac{1}{2}+\frac{1}{2}=\frac{5}{4}>1\)
Ta có:
\(B=\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\)\(\frac{1}{19}\)
\(B=\left(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{15}\right)+\left(\frac{1}{16}+...+\frac{1}{19}\right)\)
\(\Rightarrow B>\left(\frac{1}{15}+\frac{1}{15}+\frac{1}{15}+...+\frac{1}{15}\right)+\left(\frac{1}{20}+...+\frac{1}{20}\right)\)
\(B>\frac{4}{5}+\frac{1}{5}\)
\(B>1\)\(\left(đpcm\right)\)
Nhiều cách lắm,ví dụ nhé:
B = ( \(\frac{1}{4}+\frac{1}{5}+...+\frac{1}{11}\) ) + ( \(\frac{1}{12}+\frac{1}{13}+...+\frac{1}{19}\))
______________________ _________________________
B C
-Ta xét B ( vì bạn bảo chi tiết nên tôi làm như vậy còn ở bài thì không cần như vậy )
\(\frac{1}{4}>\frac{1}{12}\);...; \(\frac{1}{11}>\frac{1}{12}\)
-Xét C : \(\frac{1}{12}>\frac{1}{20};...;\frac{1}{19}>\frac{1}{20}\)
(=) B > \(\left(\frac{1}{12}+\frac{1}{12}+...+\frac{1}{12}\right)+\left(\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}\right)\)
_________________ ___________________
8 số 8 số
(=) B > \(\frac{8}{12}+\frac{8}{20}\)= \(\frac{2}{3}+\frac{2}{5}\)= \(\frac{16}{15}\)> 1
(=) B > 1 (đpcm)