
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a, \(A=\sqrt{\left(1-x\right)^2}-1=\left|1-x\right|-1=1-x-1\)(vì x<1)
<=> A=\(-x\)
b,B=\(\frac{3-\sqrt{x}}{x-9}\left(x\ge0,x\ne9\right)\)
=\(\frac{-\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=-\frac{1}{\sqrt{x}+3}\)
Vậy \(B=-\frac{1}{\sqrt{x}+3}\)
c, C=\(\frac{x-5\sqrt{x}+6}{\sqrt{x}-3}\left(x\ge0,x\ne9\right)\)
=\(\frac{x-2\sqrt{x}-3\sqrt{x}+6}{\sqrt{x}-3}\)=\(\frac{\sqrt{x}\left(\sqrt{x}-2\right)-3\left(\sqrt{x}-2\right)}{\sqrt{x}-3}\)=\(\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}{\sqrt{x}-3}\)=\(\sqrt{x}-2\)
Vậy C= \(\sqrt{x}-2\)
d, D=\(5-3x-\sqrt{25-10x+x^2}\left(x< 5\right)\)
= \(5-3x-\sqrt{\left(5-x\right)^2}\)=\(5-3x-\left|5-x\right|\)=\(5-3x-5+x\) (vì x<5)=-2x
Vậy D=-2x
e, E=\(\sqrt{3a}.\sqrt{27a}\) (đk \(a\ge0\))
=\(\sqrt{3.27.a^2}=\sqrt{3^4}.a=9a\)
Vậy E=9a
f, F=\(\frac{1}{a-1}\sqrt{9\left(a-1\right)^2}\) (đk :a>1)
= \(\frac{1}{a-1}.3\left|a-1\right|\)=\(\frac{1}{a-1}.3\left(a-1\right)\) (vì a>1)=3
Vậy F=3

\(A=\left|1-x\right|-1=1-x-1=-x\)
\(B=\frac{3-\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=-\sqrt{x}-3\)
\(C=\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}{\sqrt{x}-3}=\sqrt{x}-2\)
\(D=\sqrt{\left(x-1\right)^2}-x=\left|x-1\right|-x=\left[{}\begin{matrix}-1\left(x\ge1\right)\\1-2x\left(x< 1\right)\end{matrix}\right.\)

a)
\(4\sqrt{7}=\sqrt{4^2.7}=\sqrt{112}\)
\(3\sqrt{13}=\sqrt{3^2.13}=\sqrt{117}\)
\(\sqrt{112}< \sqrt{117}\Rightarrow 4\sqrt{7}< 3\sqrt{13}\)
b) \(3\sqrt{12}=\sqrt{3^2.12}=\sqrt{9.2^2.3}=2\sqrt{27}>2\sqrt{16}\)
c)
\(\frac{1}{4}\sqrt{82}=\sqrt{\frac{82}{16}}=\sqrt{\frac{41}{8}}=\sqrt{5+\frac{1}{8}}\)
\(6\sqrt{\frac{1}{7}}=\sqrt{\frac{36}{7}}=\sqrt{5+\frac{1}{7}}\)
\(\sqrt{5+\frac{1}{8}}< \sqrt{5+\frac{1}{7}}\Rightarrow \frac{1}{4}\sqrt{82}< 6\sqrt{\frac{1}{7}}\)
d)
\(\frac{1}{2}\sqrt{\frac{17}{2}}=\sqrt{\frac{17}{8}}=\sqrt{2+\frac{1}{8}}\)
\(\frac{1}{3}\sqrt{19}=\sqrt{\frac{19}{9}}=\sqrt{2+\frac{1}{9}}\)
\(\sqrt{2+\frac{1}{8}}>\sqrt{2+\frac{1}{9}}\Rightarrow \frac{1}{2}\sqrt{\frac{17}{2}}> \frac{1}{3}\sqrt{19}\)
e)
\(3\sqrt{3}-2\sqrt{2}=\sqrt{27}-\sqrt{8}\)
Mà \(\sqrt{27}>\sqrt{25}; \sqrt{8}< \sqrt{9}\Rightarrow \sqrt{27}-\sqrt{8}> \sqrt{25}-\sqrt{9}=5-3=2\)
Vậy \(3\sqrt{3}-2\sqrt{2}>2\)
f)
\(\sqrt{7}+\sqrt{5}< \sqrt{9}+\sqrt{9}=6\)
\(\sqrt{49}=7\)
\(\Rightarrow \sqrt{7}+\sqrt{5}< 6< 7=\sqrt{49}\)
g)
\(\sqrt{2}< \sqrt{3}; \sqrt{11}< \sqrt{25}=5\)
\(\Rightarrow \sqrt{2}+\sqrt{11}< \sqrt{3}+5\)
h) Lặp lại câu d
i)
\(\sqrt{21}>\sqrt{20}\); \(\sqrt{5}< \sqrt{6}\)
\(\Rightarrow \sqrt{21}-\sqrt{5}> \sqrt{20}-\sqrt{6}\)

\(\frac{3\sqrt{7}+5\sqrt{2}}{\sqrt{5}}=\frac{3}{5}\sqrt{35}+\sqrt{10}< \sqrt{35}+\sqrt{10}\)
\(\frac{\sqrt{3+\sqrt{5}}}{\sqrt{2}}=\frac{\sqrt{6+2\sqrt{5}}}{2}=\frac{\sqrt{5}+1}{2}\)
\(\frac{2+\sqrt{2}}{2-\sqrt{2}}+\frac{2-\sqrt{2}}{2+\sqrt{2}}=\frac{\left(2+\sqrt{2}\right)^2+\left(2-\sqrt{2}\right)^2}{2}=\frac{12}{2}=6>4\sqrt{2}\) (do \(36>32\))
\(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}=\frac{\sqrt{8+2\sqrt{7}}-\sqrt{8-2\sqrt{7}}}{\sqrt{2}}=\frac{\sqrt{7}+1-\left(\sqrt{7}-1\right)}{\sqrt{2}}=\frac{2}{\sqrt{2}}=\sqrt{2}< \sqrt{3}\)

bạn thử tải app này xem có đáp án không nhé <3 https://giaingay.com.vn/downapp.html
Thu gọn B-.-?
Ta có: \(B=\frac{1}{3}\sqrt{9+6v+v^2}+\frac{4v}{3}+5\)
\(B=\frac{1}{3}\sqrt{\left(3+v\right)^2}+\frac{4v}{3}+5\)
\(B=\frac{1}{3}\cdot\left|3+v\right|+\frac{4v}{3}+5\)
Vì v < - 3
=> \(B=\frac{1}{3}\cdot\left[-\left(3+v\right)\right]+\frac{4v}{3}+5\)
\(B=\frac{-3-v}{3}+\frac{4v}{3}+5\)
\(B=\frac{3v-3}{3}+5=v-1+5=v+4\)
Vậy \(B=v+4\)
\(B=\frac{1}{3}\sqrt{9+6v+v^2}+\frac{4v}{3}+5\)
\(B=\frac{1}{3}\sqrt{3^2+3\cdot2\cdot v+v^2}+\frac{4v}{3}+5\)
\(B=\frac{1}{3}\sqrt{\left(3+v\right)^2}+\frac{4v}{3}+5\)
\(B=\frac{1}{3}\left|3+v\right|+\frac{4v}{3}+5\)
Với v < -3
\(B=\frac{1}{3}\cdot\left[-\left(3+v\right)\right]+\frac{4v}{3}+5\)
\(B=\frac{1}{3}\left(-3-v\right)+\frac{4v}{3}+5\)
\(B=-1-\frac{v}{3}+\frac{4v}{3}+5\)
\(B=-1+\frac{-v+4v}{3}+5\)
\(B=4+\frac{3v}{3}=4+v\)