Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
ôi trờiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left\{{}\begin{matrix}4xy+4\left(x^2+y^2\right)+\dfrac{3}{\left(x+y\right)^2}=7\\2x+\dfrac{1}{x+y}=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3\left(x+y\right)^2+\left(x-y\right)^2+\dfrac{3}{\left(x+y\right)^2}=7\\\left(x+y\right)+\left(x-y\right)+\dfrac{1}{x+y}=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3\left[\left(x+y\right)+\dfrac{1}{x+y}\right]^2+\left(x-y\right)^2=13\\\left(x+y\right)+\left(x-y\right)+\dfrac{1}{x+y}=1\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}x+y+\dfrac{1}{x+y}=a\\x-y=b\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}3a^2+b^2=13\\a+b=1\end{matrix}\right.\)
Đơn giản rồi nhé
![](https://rs.olm.vn/images/avt/0.png?1311)
2)ĐK:x\(\ge\frac{1}{2}\)
pt(2)\(\Leftrightarrow\left(y+1\right)^3\)+(y+1)=\(\left(2x\right)^3\)+2x
Xét hàm số: f(t)=\(t^3\)+t
f'(t)=3\(t^2\)+1>0,\(\forall\)t
\(\Rightarrow\)hàm số liên tục và đồng biến trên R
\(\Rightarrow\)y+1=2x
Thay y=2x-1 vào pt(1) ta đc:
\(x^2\)-2x=2\(\sqrt{2x-1}\)
\(\Leftrightarrow\left(x^2-4x+2\right)\left(1+\frac{4}{2x-2+2\sqrt{2x-1}}\right)=0\)
\(\Leftrightarrow x^2\)-4x+2=0(do(...)>0)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=2+\sqrt{2}\Rightarrow y=3+2\sqrt{2}\\x=2-\sqrt{2}\Rightarrow y=3-2\sqrt{2}\end{array}\right.\)
4)ĐK:\(y\ge\frac{2}{3}\)
pt(1)\(\Leftrightarrow x-\sqrt{3y-2}=\sqrt{3y\left(3y-2\right)}-x\sqrt{x^2+2}\)
\(\Leftrightarrow x\left(\sqrt{x^2+2}+1\right)=\sqrt{3y-2}\left(\sqrt{3y}+1\right)\)
Xét hàm số:\(f\left(t\right)=t\left(\sqrt{t^2+2}+1\right)\)
\(\Rightarrow\)hàm số liên tục và đồng biến trên R
\(\Rightarrow x=\sqrt{3y-2}\)
Thay vào pt(2) ta đc:\(\sqrt{3y-2}+y+\sqrt{y+3}=4\)
\(\Leftrightarrow\sqrt{3y-2}-1+\sqrt{y+3}-2+y-1=0\)
\(\Leftrightarrow\left(y-1\right)\left(\frac{3}{\sqrt{3y-2}+1}+\frac{1}{\sqrt{y+3}+2}+1\right)=0\)
\(\Leftrightarrow y=1\Rightarrow x=1\)(do...)>0)
KL:...
![](https://rs.olm.vn/images/avt/0.png?1311)
đặt \(\left\{{}\begin{matrix}S=X+Y\\P=X.Y\end{matrix}\right.\)
a)\(\left\{{}\begin{matrix}S+P=5\\S^2-P=7\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}P=5-S\\S^2+S-12=0\end{matrix}\right.\)
\(\left\{{}\begin{matrix}P=5-S\\\left[{}\begin{matrix}S=-4\\S=3\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}S=-4\\P=9\end{matrix}\right.\\\left\{{}\begin{matrix}S=3\\P=2\end{matrix}\right.\end{matrix}\right.\)
suy ra tìm đc x và y
b,c tương tự
![](https://rs.olm.vn/images/avt/0.png?1311)
chia cả hai vế cho y khác 0
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x^2+1}{y}+x+y-2=2\\\left(\dfrac{x^2+1}{y}\right)\left(x+y-2\right)=1\end{matrix}\right.\)
Đặt \(\dfrac{x^2+1}{y}=a\) ; \(x+y-2=b\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=2\\ab=1\end{matrix}\right.\)
...........
cho mk sửa chut nha pt 2, là\(2(x+y)+\sqrt{x}+1=\sqrt{2(x+y+11)}\)