K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2016

12 giờ trưa là :

12 . 60 = 720 phút (tính từ 0 giờ)

10 giờ sáng là :

10 . 60 = 600 phút (tính từ 0 giờ)

Gọi a là số cần tìm:

Giả sử : 720 phút - x - 9 phút = 600 phút + 2x 

=> x = 37

7 tháng 7 2016

copy paste ???

11 tháng 1 2018

Đầu tiên ta xử lý cái thời gian nghỉ 1h trước giả sử thời gian nghỉ lần 4 cũng là 10' thì thời gian người đó đã đi là:

\(12-4-\frac{5}{6}=\frac{43}{6}\left(h\right)\)

Thời gian mỗi lần người đó đi rồi nghỉ là:

\(\frac{4}{5}+\frac{1}{10}=\frac{29}{30}\left(h\right)\)

Gọi số lần người đó nghỉ là n thì ta có:

\(n=\left[\frac{43}{6}:\frac{29}{30}\right]=7\)

Thời gian người đó đi quãng đường cuối là: 

\(\frac{43}{6}-\frac{7.29}{30}=\frac{2}{5}\left(h\right)\)

Vậy quãng đường người đó đã đi là:

\(4.7+\frac{4.2}{5}=30\left(km\right)\)

11 tháng 1 2018

Bài này chỗ cuối cùng do số 4 cạnh số 5 nên bấm nhầm qua số 4 mất. Nhưng kết quả vẫn vậy nhé. Chỉ cần thay số 4 thành số 5 là được. Chỗ 4.7 + 4.2/5 = 30 thay thành 4.7 + 5.2/5 = 30 nha

14 tháng 11 2016

Phút thứ 1 : Bóng đèn số \(x_1=0\) sáng

Phút thứ 2 : Bóng đèn số \(x_2=\left(216x_1+19\right)mod56=19\)sáng.

Phút thứ 3 : Bóng đèn số \(x_3=\left(216x_2+19\right)mod56=35\) sáng.

Phút thứ 4 : Bóng đèn số \(x_4=\left(216x_3+19\right)mod56=19\) sáng.

.............................................................................................................

Tới đây ta nhận thấy rằng từ phút thứ hai trở đi, chỉ có bóng đèn số 35 và 19 sáng. 

Hay nói cách khác, số chu kì lặp là 2. Các phút chẵn thì bóng đèn 19 sáng, còn các phút

lẻ thì bóng đèn số 35 sáng.

Như vậy ở phút thứ 2018 thì bóng đèn số 19 đang sáng.

5 tháng 7 2021

thứ 19

29 tháng 9 2017

đợi đến 12:00 cho tròng lun ik nha

29 tháng 9 2017

sau 3 giờ nữa thì kim giờ và kim phút trùng nhau

10 tháng 3 2020

Đổi: 1h 6 phút = 1,1 giờ; 2 giờ 30 phút = 2,5 giờ

Gọi vận tốc của xe ô tô đi từ A là x ; vận tốc của xe ô tô đi từ B là y  ( >0; km/h)

+) Nếu cùng khởi hành sau hai giờ chúng gặp nhau. 

Sau hai giờ ô tô đi từ A đi được quãng  đường là: 2x ( km)

Sau hai giờ ô tô đi từ B đi được quãng đường là: 2 y ( km)

=> Có phương trình : 2x + 2y = 220  ( km)  (1)

+) Nếu xe đi từ A khởi hành trước xe đi từ B 1, 1 giờ:

Sau 2,5 h xe đi từ A đi được quãng đường là: 2,5.x ( km)

Xe đi từ B đi được quãng đường là: ( 2,5 - 1,1) .y= 1,4y (km)

=> Có phương trình: 2,5x + 1,4y - 220 (km) (2)

Từ (1) và (2) ta có hệ : \(\hept{\begin{cases}2x+2y=220\\2,5x+1,4y=220\end{cases}}\Leftrightarrow\hept{\begin{cases}x=60\\y=50\end{cases}}\)  ( thỏa mãn)

Vậy...

Rảnh thế!

14 tháng 12 2018

rảnh mà 

30 tháng 9 2020

Gọi x (phút), y (phút) lần lượt là thời gian vòi thứ nhất , vòi thứ hai chảy một mình để đầy bể.

( Điều kiện: x, y > 80 )

Trong 1' vòi thứ nhất chảy được \(\frac{1}{x}\)bể , vòi thứ 2 chảy được \(\frac{1}{y}\)bể

Đổi 1h20' = 80'

Sau 80' , cả 2 vòi cùng chảy đầy bể nên ta có p/trình :

\(80.\frac{1}{x}+80.\frac{1}{y}=1\)

Mở vòi thứ nhất chảy trong 10' và vòi thứ 2 chảy trong 12' thì chỉ được \(\frac{2}{15}\)bể nước nên ta có p/trình :

\(10.\frac{1}{x}+12.\frac{1}{y}=\frac{2}{15}\)

Ta có HPT :

\(\hept{\begin{cases}80.\frac{1}{x}+80.\frac{1}{y}=1\\10.\frac{1}{x}+12.\frac{1}{y}=\frac{2}{15}\end{cases}}\)

Đặt \(\frac{1}{x}=u\)\(\frac{1}{y}=v\). Khi đó HPT trở thành :

\(\hept{\begin{cases}80u+80v=1\\10u+12v=\frac{2}{15}\end{cases}\Leftrightarrow\hept{\begin{cases}u+v=\frac{1}{80}\\5u+6v=\frac{1}{15}\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}5u+5v=\frac{1}{16}\\6u+6v=\frac{1}{15}\end{cases}\Leftrightarrow\hept{\begin{cases}v=\frac{240}{v}\\u=\frac{1}{120}\end{cases}}}\)

\(+u=\frac{1}{120}\Rightarrow\frac{1}{x}=\frac{1}{120}\Rightarrow x=120\left(tmđk\right)\)

\(+v=\frac{1}{240}\Rightarrow\frac{1}{y}=\frac{1}{240}\Rightarrow y=240\left(tmđk\right)\)

Vậy nếu chảy một mình, để đầy bể vòi thứ nhất chảy trong 120 phút ( = 2 giờ ) , vòi thứ hai 240 phút ( = 4 giờ )

30 tháng 9 2020

Gọi x (phút), y (phút) lần lượt là thời gian vòi thứ nhất, vòi thứ hai chảy một mình để đầy bể (Đk: x, y > 80 )

Trong 1 phút vòi thứ nhất chảy được \(\frac{1}{x}\)bể;vòi thứ hai chảy được \(\frac{1}{y}\)bể

Sau 1h20'= 80', cả hai vòi cùng chảy thì đầy bể nên ta có pt:\(80.\frac{1}{x}+80.\frac{1}{y}=1\)

Mở vòi thứ nhất trong 10' và vòi thứ 2 trong 12' thì chỉ được \(\frac{2}{15}\) bể nước nên ta có pt :\(10.\frac{1}{x}+12.\frac{1}{y}=\frac{2}{15}\)

Ta có hệ pt:\(\hept{\begin{cases}80.\frac{1}{x}+80.\frac{1}{y}=1\\10.\frac{1}{x}+12.\frac{1}{y}=\frac{2}{15}\end{cases}}\)

Đặt \(\frac{1}{x}=a;\frac{1}{y}=b\).Khi đó hpt là:\(\hept{\begin{cases}80.a+80.b=1\\10.a+12.b=\frac{2}{15}\end{cases}\Rightarrow\hept{\begin{cases}a+b=\frac{1}{80}\\5a+6b=\frac{1}{15}\end{cases}\Rightarrow}\hept{\begin{cases}5a+5b=\frac{1}{16}\\5a+6b=\frac{1}{15}\end{cases}\Rightarrow}\hept{\begin{cases}b=\frac{1}{240}\\a=\frac{1}{120}\end{cases}}}\)

Vì \(a=\frac{1}{120}\Rightarrow\frac{1}{x}=\frac{1}{120}\Rightarrow x=120\left(tm\right)\)

\(b=\frac{1}{240}\Rightarrow\frac{1}{y}=\frac{1}{240}\Rightarrow y=240\left(tm\right)\)

Vậy ....