Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x^2+2x+1}{x^2+2x+1}+\frac{x^2+2x+2}{x^2+2x+3}=\frac{7}{6}\)
\(\Leftrightarrow\frac{x^2+2x+2-1}{x^2+2x+2}+\frac{x^2+2x+3-1}{x^2+3x+3}=\frac{7}{6}\)
\(\Leftrightarrow1-\frac{1}{x^2+2x+2}+1-\frac{1}{x^2+2x+3}=\frac{7}{6}\)
Đặt \(y=x^2+2x+1\), ta được:
\(2-\left(\frac{1}{y+1}+\frac{1}{y+2}\right)=\frac{7}{6}\)
\(\Leftrightarrow\frac{1}{y+1}+\frac{1}{y+2}=2-\frac{7}{6}=\frac{5}{6}\)
\(\Leftrightarrow\frac{1}{y+1}+\frac{1}{y+2}-\frac{5}{6}=0\)
\(\Leftrightarrow\frac{6\left(y+2\right)+6\left(y+1\right)-5\left(y+1\right)\left(y+2\right)}{6\left(y+1\right)\left(y+2\right)}=0\)
\(\Leftrightarrow6y+12+6y+6-\left(5y+5\right)\left(y+2\right)=0\)
\(\Leftrightarrow6y+12+6y+6-5y^2-10y-5y-10=0\)
\(\Leftrightarrow-5y^2-3y+8=0\)
\(\Leftrightarrow-5y^2+5y-8y+8=0\)
\(\Leftrightarrow-5y\left(y-1\right)-8\left(y-1\right)=0\)
\(\Leftrightarrow-\left(y-1\right)\left(5y+8\right)=0\)
Th1 \(y-1=0\Leftrightarrow y=1\)
\(\Leftrightarrow x^2+2x+1=1\)
\(\Leftrightarrow\left(x+1\right)^2=1\Leftrightarrow x+1=1;x=1=-1\)
\(\Leftrightarrow x=0\) hoặc \(x=-2\)
Th2 \(5y+8=0\Leftrightarrow5y=-8\Leftrightarrow y=\frac{-8}{5}\)
\(\Leftrightarrow x^2+2x+1=\frac{-8}{5}\)
\(\Leftrightarrow\left(x+1\right)^2=-\frac{8}{5}\)
Vì \(\left(x+1\right)^2\ge0\) mà \(\left(x+1\right)^2=\frac{-8}{5}\) ( vô lý) nên k có giá trị của x
Vậy \(S=\left\{0;-2\right\}\)
Cho mik hỏi
c) \(\frac{8x-56}{x-7}\) đi xuống thành 8x + 56 rùi?
f) \(\frac{x^2+10}{12x\left(x+10\right)}\) đi xuống thì thành x2 - 10 rùi?
Mong bạn trả lời câu hỏi của mik nhanh lên nhé. :)
Trước dấu ngoặc là dấu trừ thì khi phá ngoặc đổi dấu, kiểu như: \(x-\left(a-b\right)\rightarrow x-a+b\\ x-\left(a+b\right)\rightarrow x-a-b\)
b, \(\frac{3x-2}{5}\ge\frac{x+1,6}{2}\)
=> \(6x-4\ge5x+8\)
=> \(x-12\ge0\)
=> \(x\ge12\)
bpt 2: \(\frac{6-2x+5}{6}>\frac{3-x}{4}\)
=> \(\frac{11-2x}{6}>\frac{3-x}{4}\)
=> \(44-8x>18-6x\)
=> \(x< 13\)
Vậy để t/m cả 2 bpt thì : \(12\le x< 13\)
\(\left(x-1\right)\left(x+1\right)-2\left(2x+3\right)\le\left(x-2\right)^2+x\)
\(\Leftrightarrow x^2-1-4x-6\le x^2-4x+4+x\)
\(\Leftrightarrow x^2-4x-7\le x^2-3x+4\)
\(\Leftrightarrow x^2-4x-x^2+3x\le7+4\)
\(\Leftrightarrow-x\le11\)
\(\Leftrightarrow x\le-11\)
\(\frac{x}{x-2}+\frac{x+2}{x}>2\left(đk:x\ne2;0\right)\)
\(\Leftrightarrow\frac{x}{x-2}+\frac{x+2}{x}-2>0\)
\(\Leftrightarrow\frac{x^2}{x\left(x-2\right)}+\frac{x^2-4}{x\left(x-2\right)}-\frac{2x\left(x-2\right)}{x\left(x-2\right)}>0\)
\(\Leftrightarrow\frac{2x^2-4-2x^2+4x}{x\left(x-2\right)}>0\)
\(\Leftrightarrow\frac{4\left(-1+x\right)}{x\left(x-2\right)}>0\)
\(\Leftrightarrow-4+x>0\Leftrightarrow x>4\left(tmdk\right)\)
=.= dung hog bạn
quạc :<
sửa dòng 4
\(\Rightarrow\frac{4\left(x-1\right)}{x\left(x-2\right)}>0\) (1)
để (1) lớn hơn 0 => tử và mẫu cùng dấu
xét th1
th2