Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=(n^2-9)(n^2-1)
=(n-3)(n+3)(n-1)(n+1)
=(2k+1-3)(2k+1+3)(2k+1-1)(2k+1+1)
=2k(2k+2)(2k-2)(2k+4)
=16k(k+1)(k-1)(k+2)
Vì k;k+1;k-1;k+2là 4 số liên tiếp
nen k(k-1)(k+1)(k+2) chia hết cho 4!=24
=>A chia hết cho 384
\(n^3+3n^2-n-3\)
\(=n^2\left(n+3\right)-\left(n+3\right)\)
\(=\left(n+1\right)\left(n-1\right)\left(n+3\right)\)
Vì n là số lẻ => \(n-1;n+1;n+3\) là 3 số chẵn liên tiếp
Mà 3 số chẵn liên tiếp luôn \(⋮48\)
\(\Rightarrowđpcm\)
\(n^3+3n^2-n-3\)
\(=n^2\times\left(n+3\right)-\left(n+3\right)\)
\(=\left(n+3\right)\times\left(n^2-1\right)\)
\(=\left(n+3\right)\times\left(n-1\right)\times\left(n+1\right)\)
Vì n là số lẻ nên \(n⋮̸2\)
\(\Rightarrow n+3⋮2;n-1⋮2;n+1⋮2\)
\(\Rightarrow\left(n+3\right)\times\left(n-1\right)\times\left(n+1\right)⋮48\)
\(\Rightarrow n^3+3n^2-n-3⋮48\)
Câu 1 bạn dùng chia hết cho 13
Câu 2 bạn cộng cả 2 vế với z^4 rồi dùng chia 8
Câu 3 bạn đặt a^4n là x thì x sẽ chia 5 dư 1 và chia hết cho 4 hoăc chia 4 dư 1
Khi đó ta có x^2+3x-4=(x-1)(x+4)
đến đây thì dễ rồi
Câu 4 bạn xét p=3 p chia 3 dư 1 p chia 3 dư 2 là ra
Câu 6 bạn phân tích biểu thức của đề thành nhân tử có nhân tử x-2
Câu 5 mình nghĩ là kẹp giữa nhưng chưa ra
Ta sẽ chứng minh với \(n\ge1\)thì \(P_n=\left(1-\frac{4}{1}\right)\left(1-\frac{4}{9}\right)\left(1-\frac{4}{25}\right)...\left(1-\frac{4}{\left(2n-1\right)^2}\right)=\frac{-2n-1}{2n-1}\)
Với \(n=1\)mệnh đề đúng vì \(1-4=-3=\frac{-2.1-1}{2.1-1}\)
Giả sử mệnh đề đúng với \(n=k\)tức là \(\left(1-\frac{4}{1}\right)\left(1-\frac{4}{9}\right)\left(1-\frac{4}{25}\right)...\left(1-\frac{4}{\left(2k-1\right)^2}\right)=\frac{-2k-1}{2k-1}\)
Ta sẽ chứng minh mệnh đề đúng với \(n=k+1\)tức là chứng minh \(\left(1-\frac{4}{1}\right)\left(1-\frac{4}{9}\right)\left(1-\frac{4}{25}\right)...\left(1-\frac{4}{\left(2k+1\right)^2}\right)=\frac{-\left(2k+3\right)}{2k+1}\)
Thật vậy \(\left(1-\frac{4}{1}\right)\left(1-\frac{4}{9}\right)\left(1-\frac{4}{25}\right)...\left(1-\frac{4}{\left(2k-1\right)^2}\right)\left(1-\frac{4}{\left(2k+1\right)^2}\right)=\frac{-2k-1}{2k-1}.\frac{\left(2k-1\right)\left(2k+3\right)}{\left(2k+1\right)^2}\)
\(=\frac{-\left(2k+1\right)}{2k-1}.\frac{\left(2k-1\right)\left(2k+3\right)}{\left(2k+1\right)^2}=\frac{-\left(2k+3\right)}{2k+1}.\)
Theo nguyên lý quy nạp, mệnh đề đúng với mọi \(n\ge1\)
Mình học lớp 6 nên chẳng may có gì sai bạn(chị anh) sửa giúp em nhé:
Ta có:
\(\left(\sqrt{n+a}+\sqrt{n-a}\right)^2< \left(2\sqrt{n}\right)^2\) (bình phương cả 2 vế)
=> \(2n+2\sqrt{n^2-a^2}< 4n\)
=>\(2\sqrt{n^2-a^2}< 2n\)
=>\(\sqrt{n^2-a^2}< n\)
=>n2 - a2 < n2 (bình phương cả 2 vế)
Vì |a|>0
=>a2 > 0
=> n2-a2 < n2
Vậy \(\sqrt{n+a}+\sqrt{n-a}< 2\sqrt{n}\)
câu b làm tương tự nhé:
Bài chỉ chứng minh vế phải chia hết vế trái chứ k tìm n hay a nhé bạn
Nguyễn Ngọc Phương: Mình đâu có tìm $n,a$ đâu hả bạn? Mình đang chỉ ra TH sai mà???
Chả hạn, chứng minh $n(n+1)(n^2+1)\vdots 5$ thì có nghĩa mọi số tự nhiên/ nguyên $n$ đều phải thỏa mãn. Nhưng chỉ cần có 1 TH $n$ thay vào không đúng nghĩa là đề không đúng rồi.
a)= \(\frac{\sqrt{2}-1}{2-1}+\frac{\sqrt{3}-\sqrt{2}}{3-2}+...+\frac{\sqrt{100}-\sqrt{99}}{100-99}\)
=\(\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{100}-\sqrt{99}\)
= \(-1+\sqrt{100}\)
= -1 +10
=9
b)Ta có\(\left(\sqrt{n+1}-\sqrt{n}\right)\cdot\left(\sqrt{n+1}+\sqrt{n}\right)\)=n+1-n=1 (1)
Lại có:\(\frac{1}{\sqrt{n+1}+1}\cdot\left(\sqrt{n+1}+1\right)=1\)(2)
Từ (1) và (2)=>\(\left(\sqrt{n+1}-1\right)=\frac{1}{\sqrt{n+1}+1}\)
@Akai Haruma