Bảng biến thiên ở hình bên là của một trong bốn hàm số dưới đây. Tìm hàm số đó.

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 5 2017

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

23 tháng 5 2017

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

GV
25 tháng 4 2017

a) (H) có các đường tiệm cận là:

- Tiệm cận ngang y = -1

- Tiệm cận đứng x = -1

hai đường tiềm cận này cắt nhau tại điểm I(-1; -1).

Hình (H') có hai đường tiệm cận cắt nhau tại I'(2;2) nên ta cần phép tịnh tiến theo vector \(\overrightarrow{II'}=\left(2-\left(-1\right);2-\left(-1\right)\right)=\left(3;3\right)\)

b) Hình (H') có phương trình là:

\(y+3=\dfrac{3-\left(x+3\right)}{\left(x+3\right)+1}\) hay là \(y=\dfrac{-4x-12}{x+4}\)

Hình đối xứng với (H') qua gốc tọa độ có phương trình là:

\(-y=\dfrac{-4\left(-x\right)-12}{-x+4}\) hay là: \(y=\dfrac{4x-12}{-x+4}\)

24 tháng 5 2017

Hàm lũy thừa, mũ và loagrit

24 tháng 5 2017

Hàm lũy thừa, mũ và loagrit

24 tháng 5 2017

Hàm lũy thừa, mũ và loagrit

22 tháng 11 2016

\(y'=4x\left(x-m\right)\left(x+m\right)\\ y'=0\Leftrightarrow\begin{cases}x=0\\x=\pm m\end{cases}\)

Với m=0 thì hàm số có 3 cực trị là 0, -m và m

đồ thị hàm số có 3 điểm cực trị \(A\left(0;1\right),M\left(-m;1-m^4\right),N\left(m;1-m^4\right)\)

Nhận thấy \(AM=AN\) nên \(\Delta AMN\) cân tại A với mọi m

Gọi trung điểm MN là \(I\left(0;1-m^4\right)\)

\(\Delta AMN\) vuông cân tại A khi và chỉ khi \(IA=IM=IN\) hay\(IA=IN\)

\(\Leftrightarrow IA=IN\Leftrightarrow\left|m^4\right|=\left|m\right|\Leftrightarrow m=\pm1\) (vì \(m\ne0\))

 

16 tháng 11 2016

kho vai

23 tháng 5 2017

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

23 tháng 5 2017

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

14 tháng 5 2016

a. \(y=\left(x^2-4\right)^{\frac{\pi}{2}}\)

Điều kiện \(x^2-4>0\Leftrightarrow\left[\begin{array}{nghiempt}x< -2\\x>2\end{array}\right.\)

Suy ra tập xác đinh \(D=\left(-\infty;-2\right)\cup\left(2;+\infty\right)\)

 

b.\(y=\left(6-x-x^2\right)^{\frac{1}{3}}\)

Điều kiện \(6-x-x^2>0\Leftrightarrow x^2+x-6< 0\)

                                      \(\Leftrightarrow-3< x< x\)

Vậy tập xác định là \(D=\left(-3;2\right)\)

17 tháng 12 2017

Cách giải