Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/
Xét tg ABC có AB=AC => tg ABC cân tại A \(\Rightarrow\widehat{B}=\widehat{C}\) (Trong tg cân hai góc ở đáy = nhau)
BH=CH => AH là đường trung tuyến \(\Rightarrow AH\perp BC\) (trong tg cân đường trung tuyến xp từ đỉnh đồng thời là đường cao và đường trung trực)
2/ Ta có
\(MN\perp BC;CP\perp BC\) => MN//CP
MN=CP
=> Tứ giác MNPC là hình bình hành (Tứ giác có cặp cạnh đối // và = nhau thì tứ giác đó là hbh)
=> MN=CP; MC=NP; MP chung \(\Rightarrow\Delta MCP=\Delta PMN\left(c.c.c\right)\)
3/
Trong hình bình hành MNPC thì MP và NC là hai đường chéo hbh
=> I là trung điểm của NC (trong hbh hai đường chéo cắt nhau tại trung điểm mỗi đường)
a) \(\frac{1985.1987-1}{1980+1985.1986}=\frac{1985.1986+1985-1}{1980+1985.1986}=\frac{1985.1986+1984}{1985.1986+1980}>\frac{1985.1986+1980}{1985.1986+1980}=1\)
b) \(A=\frac{13^{15}+1}{13^{16}+1}=\frac{13^{15}+\frac{1}{13}+\frac{12}{13}}{13^{16}+1}=\frac{\frac{1}{13}\left(13^{16}+1\right)+\frac{12}{13}}{13^{16}+1}=\frac{1}{13}+\frac{12}{13\left(13^{16}+1\right)}\)
\(B=\frac{13^{16}+1}{13^{17}+1}=\frac{13^{16}+\frac{1}{13}+\frac{12}{13}}{13^{17}+1}=\frac{\frac{1}{13}\left(13^{17}+1\right)+\frac{12}{13}}{13^{17}+1}=\frac{1}{13}+\frac{12}{13\left(13^{17}+1\right)}\)
Có \(13^{16}+1< 13^{17}+1\)nên \(\frac{12}{13\left(13^{16}+1\right)}>\frac{12}{13\left(13^{17}+1\right)}\)
Vậy \(A>B\).
1, xét tam giác BDA và tam giác BEC có : ^ABC chung
^BEC = ^BDA = 90
=> tam giác BDA đồng dạng với tam giác BEC (g-g)
=> ^BAD = ^BCE
2, xét tam giác HEA và tam giác BDA có : ^BAD chung
^HEA = ^BDA = 90
=> tam giác HEA đồng dạng với tg BDA (g-g)
=> ^AHE = ^ABD
3, có : ^AHE = ^ACB mà AHE = 60 => ^ABC = 60
có ^BAC + ^BAD = 90 => ^BAD = 30
mà ^BAD + ^DAC = 30 + 45 = 75 = ^BAC
XONG tính ra ^C
1/
Xét tg AOC và tg BOD có
OA=OB; OC=OD
\(\widehat{AOC}=\widehat{BOD}\) (góc đối đỉnh)
\(\Rightarrow\Delta AOC=\Delta BOD\left(c.g.c\right)\)
Ta có OA=OB; OC=OD => ACBD là hình bình hành (Tứ giác có hai đường chéo cắt nhau tại trung điểm mỗi đường thig tứ giác đó là hbh) => AC//BD (trong hình bình hành các cặp cạnh đối // với nhau từng đôi một)
2/ Xét tg ACD và tg BDC có
DC chung
AC=BD; AD=BC (trong hbh các cặp cạnh đối bằng nhau từng đôi một)
\(\Rightarrow\Delta ACD=\Delta BDC\left(c.c.c\right)\)
3/
Xet tg DAE và tg CBF có
AD=BC (cạnh đối hbh ACBD)
AE=BF (giả thiết)
\(\widehat{DAE}=\widehat{CBF}\) (Hai góc đối của hình bình hành ACBF)
\(\Rightarrow\Delta DAE=\Delta CBF\left(c.g.c\right)\)
4/
Ta có
CE//DF (cạnh đối của hbh ACBF)
CE=AC-AE; DF=BD-BF
mà AC=BD; AE=BF
=> CE=DF
=> ECFD là hình bình hành (tứ giác có cặp cạnh đối // và bằng nhau là hbh)
=> DE//CF (trong hbh các cặp cạnh đối // với nhau từng đôi một)
Trong hbh ECFD có EF và CD là hai đường chéo
=> EF và CD cắt nhau tại trung điểm mỗi đường (Trong hbh hai đường chéo cắt nhau tại trung điểm mỗi đường)
Mà O là trung điểm CD => O là trung điểm của EF => E; O; F thẳng hàng
Bài 2.
1) \(\widehat{BIC}=180^o-\left(\widehat{IBC}+\widehat{ICB}\right)=180^o-\frac{1}{2}\left(\widehat{ABC}+\widehat{ACB}\right)=180^o-\frac{1}{2}.90^o=135^o\)
2) \(\widehat{BAH}=\widehat{BCA}\)(vì cùng phụ với góc \(\widehat{ABC}\))
\(\widehat{CAH}=\widehat{ABC}\)(vì cùng phụ với góc \(\widehat{ACB}\))
suy ra \(\widehat{BAM}=\widehat{BAH}+\widehat{HAM}=\widehat{ACB}+\frac{1}{2}\widehat{ABC}\)
mà \(\widehat{BMA}=\widehat{MAC}+\widehat{MCA}\)(góc ngoài tam giác)
\(=\frac{1}{2}\widehat{ABC}+\widehat{ACB}\)
suy ra \(\widehat{BAM}=\widehat{BMA}\)
suy ra đpcm.
3) \(\widehat{ABC}=180^o-\widehat{BAM}-\widehat{BMA}=180^o-2\widehat{AMB}=60^o\)
\(\Rightarrow\widehat{ACB}=90^o-\widehat{ABC}=30^o\)
Bài 1.
1) \(AB//EF,CD\perp AB\Rightarrow CD\perp EF\).
2) Kẻ tia \(Cx\)song song với \(AB\).
Khi đó suy ra \(Cx//EF\).
Vì \(AB//Cx\Rightarrow\widehat{BAC}=\widehat{ACx}\)(hai góc so le trong)
Vì \(EF//Cx\Rightarrow\widehat{CEF}=\widehat{ECx}\)(hai góc so le trong)
suy ra \(\widehat{ACE}=\widehat{ACx}+\widehat{ECx}=\widehat{BAC}+\widehat{CEF}=25^o+35^o=60^o\)