Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét : \(B=\frac{196+197}{197+198}=\frac{196}{197+198}+\frac{197}{197+198}\)
Ta có : \(\frac{196}{197}>\frac{196}{197+198}\) và \(\frac{197}{198}>\frac{197}{197+198}\)
Hay A>B
Suy ra : \(\frac{196}{197}+\frac{197}{198}>\frac{196+197}{197+198}\)
Vì số 18 và số 12 đều chia hết cho 3, nên tổng số tiền mua 18 gói bánh và 12 gói
kẹo phải là số chia hết cho 3.
Vì Huy đưa cho cô bán hàng 2 tờ 100000 đồng và được trả lại 72000 đồng, nên
số tiền mua 18 gói bánh và 12 gói kẹo là:
100000 x 2 - 72000 = 128000 (đồng).
Vì số 128000 không chia hết cho 3, nên bạn Nam nói “Cô tính sai rồi” là đúng.
Vì số 18 và số 12 đều chia hết cho 3, nên tổng số tiền mua 18 gói bánh và 12 gói
kẹo phải là số chia hết cho 3.
Vì Huy đưa cho cô bán hàng 2 tờ 100000 đồng và được trả lại 72000 đồng, nên
số tiền mua 18 gói bánh và 12 gói kẹo là:
100000 x 2 - 72000 = 128000 (đồng).
Vì số 128000 không chia hết cho 3, nên bạn Nam nói “Cô tính sai rồi” là đúng.
B=ax.by⇒B2=a2x.b2yB=ax.by⇒B2=a2x.b2y ; B3=a3x.a3yB3=a3x.a3y
⇒⇒ số ước số tự nhiên của B2B2 là (2x+1)(2y+1)(2x+1)(2y+1)
⇒(2x+1)(2y+1)=15⇒(2x+1)(2y+1)=15
⇒⇒{2x+1=32y+1=5{2x+1=32y+1=5 ⇒{x=1y=2⇒{x=1y=2 hoặc {2x+1=52y+1=3{2x+1=52y+1=3 ⇒{x=2y=1⇒{x=2y=1
⇒⇒ số ước của B3B3 là (3x+1)(3y+1)=4.7=28
\(a,A=\frac{1}{25\cdot27}+\frac{1}{27\cdot29}+...+\frac{1}{73\cdot75}\)
\(A=\frac{1}{2}\left[\frac{2}{25\cdot27}+\frac{2}{27\cdot29}+...+\frac{2}{73\cdot75}\right]\)
\(A=\frac{1}{2}\left[\frac{1}{25}-\frac{1}{27}+\frac{1}{27}-\frac{1}{29}+...+\frac{1}{73}-\frac{1}{75}\right]\)
\(A=\frac{1}{2}\left[\frac{1}{25}-\frac{1}{75}\right]=\frac{1}{2}\cdot\frac{2}{75}=\frac{1}{75}\)
\(b,B=\frac{1}{8\cdot11}+\frac{1}{11\cdot14}+\frac{1}{14\cdot17}+...+\frac{1}{197\cdot200}\)
\(3B=\frac{3}{8\cdot11}+\frac{3}{11\cdot14}+\frac{3}{14\cdot17}+...+\frac{3}{197\cdot200}\)
\(3B=\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{197}-\frac{1}{200}\)
\(3B=\frac{1}{8}-\frac{1}{200}\)
\(3B=\frac{3}{25}\)
\(B=\frac{3}{25}:3=\frac{1}{25}\)
#)Giải :
a, \(A=\frac{1}{25.27}+\frac{1}{27.29}+...+\frac{1}{73.75}\)
\(A=\frac{1}{25}-\frac{1}{27}+\frac{1}{27}-\frac{1}{29}+...+\frac{1}{73}-\frac{1}{75}\)
\(A=\frac{1}{25}-\frac{1}{75}\)
\(A=\frac{2}{75}\)
b, \(B=\frac{1}{8.11}+\frac{1}{11.14}+\frac{1}{14.17}+...+\frac{1}{197.200}\)
\(B=\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}+...+\frac{1}{197}-\frac{1}{200}\)
\(B=\frac{1}{8}-\frac{1}{200}\)
\(B=\frac{3}{25}\)
#~Will~be~Pens~#
Câu 1 :
Ta có : \(A=\frac{10^{100}+1}{10^{101}+1}\)
\(\Rightarrow10A=\frac{10^{101}+10}{10^{101}+1}=\frac{10^{101}+1+9}{10^{101}+1}=1+\frac{9}{10^{101}+1}\)
Ta có : \(B=\frac{10^{101}+1}{10^{102}+1}\)
\(10B=\frac{10^{102}+10}{10^{102}+1}=\frac{10^{102}+1+9}{10^{102}+1}=1+\frac{9}{10^{102}+1}\)
Vì 10101+1<10102+1
\(\Rightarrow\frac{9}{10^{101}+1}>\frac{9}{10^{102}+1}\)
\(\Rightarrow1+\frac{9}{10^{101}+1}>1+\frac{9}{10^{102}+1}\)
\(\Rightarrow\)10A>10B
\(\Rightarrow\)A>B
Vậy A>B.
Câu 2 :
Ta có : \(E=\frac{2000+2001}{2001+2002}=\frac{2000}{2001+2002}+\frac{2001}{2001+2002}\)
Vì 2001<2001+2002 và 2002<2001+2002
\(\Rightarrow\hept{\begin{cases}\frac{2000}{2001}>\frac{2000}{2001+2002}\\\frac{2001}{2002}>\frac{2001}{2001+2002}\end{cases}}\)
\(\Rightarrow C>E\)
Vậy C>E.
Ta có :A = 3 + 32 + 33 + 34 + 35 + ... + 3100
3A = 3(3 + 32 + 33 + 34 + ... + 3100)
3A = 32 + 33 + 34 + 35 + ... + 3101
3A - A = (32 + 33 + 34 + 35 + ... + 3101) - (3 + 32 + 33 + ... + 3100)
2A = 3101 - 3
Ta lại có : 2A + 3 = 3n
hay 3101 - 3 + 3 = 3n
=> 3101 = 3n
=> n = 101
\(A=3+3^2+...+3^{100}\)
\(3A=3^2+3^3+...+3^{101}\)
\(3A-A=\left(3^2+3^3+...+3^{101}\right)-\left(3+3^2+...+3^{100}\right)\)
\(2A=3^{101}-3\)
Thay 2A vào biểu thức ta có :
\(3^{101}-3+3=3^n\)
\(3^{101}=3^n\)
\(\Rightarrow n=101\)
Vậy n = 101
Đáp án cần chọn là: C
Ta có: (−189)+189=0nên bạn Nam nói đúng.
Lại có:189+(−198)=−(198−189)=−9<0nên bạn Mai nói đúng.
Vậy cả Nam và Mai đều tính đúng.