Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi vận tốc của người đi xe máy trên 3/4 quãng đường AB đầu (90 km) là x (km/h) (x > 0)
Vận tốc của người đi xe máy trên 1/4 quãng đường AB sau là 0,5x (km/h)
Vận tốc của người đi xe máy khi quay trở lại A là x + 10 (km/h)
Tổng thời gian của chuyến đi là 90 x + 30 0 , 5 x + 120 x + 10 + 1 2 = 8 , 5
⇔ 90 x + 60 x + 120 x + 10 = 8 ⇔ 150 x + 120 x + 10 = 8 ⇔ 75 ( x + 10 ) + 60 x = 4 x ( x + 10 ) ⇔ 4 x 2 − 95 x − 750 = 0 ⇔ x = 30 ( d o x > 0 )
Vậy vận tốc của xe máy trên quãng đường người đó đi từ B về A là 30 + 10 = 40 (km/h)
A B Nghỉ 30p 10km/h 15km/h
Đổi \(30^,=\frac{1}{2}h\)
Thời gian dự định đi hết quãng đường AB là : \(\frac{S_{AB}}{10}\) (h)
Thời gian đi hết nửa đoạn đường đầu là : \(\frac{S_{AB}}{2}:10=\frac{S_{AB}}{20}\)(h)
Thời gian đi hết nửa đoạn đường sau là : \(\frac{S_{AB}}{2}:15=\frac{S_{AB}}{30}\)(h)
Ta có phương trình : \(\frac{S_{AB}}{10}=\frac{1}{2}+\frac{S_{AB}}{20}+\frac{S_{AB}}{30}\)
\(\Leftrightarrow\frac{S_{AB}}{10}-\frac{S_{AB}}{20}-\frac{S_{AB}}{30}=\frac{1}{2}\)
\(\Leftrightarrow\frac{1}{60}S_{AB}=\frac{1}{2}\Rightarrow S_{AB}=\frac{1}{2}:\frac{1}{60}=30\left(km\right)\)
Vậy quãng đường AB dài 30km
-Gọi thời gian người đi xe đạp từ A đến B là t , quãng đường AB là S ta có PT sau:
t = S/10 = S2x10 +S/2x15 + 1/2 (30 phút =1/2 h ) giải PT này rất đơn giản, quy đồng MSC là 60 nhân lên ta có :6S= 3S+2S+30 vậy S=30 km
Đáp số : 30 km
Gọi quãng đường AB là: x ( x > 0 ) ( km)
Thời gian dự định đi hết quãng đường AB là: y ( y > 0 ) ( giờ )
\(\Rightarrow\)10y = x
\(\Leftrightarrow\)x - 10y = 0 ( 1 )
Thời gian thực tế đế người đi xe đạp đi hết nửa quãng đường là: \(\frac{x}{2}:10=\frac{x}{20}\)
Vì muốn đến B kịp giờ nên người ấy phải đi với vânkj tốc 15km/h trên quãng đường còn lại nên =) Thời gian để đi hết quãng đường còn lai là: \(\frac{x}{2}:15=\frac{x}{30}\)giờ
Vì thời gian dự định bằng thời gian thực tế và người đó nghỉ 0,5 giờ ( 30 phút )
\(\Rightarrow\)\(\frac{x}{20}+\frac{x}{30}+0,5=y\)
\(\Leftrightarrow\)\(\frac{x}{12}-y=0,5\)( 2 )
Từ ( 1 ) và ( 2 ) ta có hệ phương trình:
\(\hept{\begin{cases}x-10y=0\\\frac{x}{12}-y=-0,5\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=30\\y=3\end{cases}}\)
Vậy quãng đường AB: 30km