\(\frac{5m+5}{m-2}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a, Đặt \(x^2=t\left(t\ge0\right)\)=> \(t^2-2mt+2m-1=0\)<=> \(\left(t-1\right)\left(t+1\right)-2m\left(t-1\right)=0\)<=> \(\orbr{\begin{cases}t=1\\t=2m-1\end{cases}}\)Mà \(t\ge0\), phương trình có 4 nghiệm phân biệt => \(m\ge\frac{1}{2},m\ne1\)Phương trình có 4 nghiệm \(S=\left\{-1,-\sqrt{2m-1},1,\sqrt{2m-1}\right\}\)2 trường hợp TH1   \(-\sqrt{2m-1}< -1< 1< \sqrt{2m-1}\)(x1<x2<x3<x4)=> \(2\sqrt{2m-1}=3.2\)=> m=5(thỏa mãn ĐK)Hoặc \(-1< -\sqrt{2m-1}<...
Đọc tiếp

a, Đặt \(x^2=t\left(t\ge0\right)\)

=> \(t^2-2mt+2m-1=0\)

<=> \(\left(t-1\right)\left(t+1\right)-2m\left(t-1\right)=0\)

<=> \(\orbr{\begin{cases}t=1\\t=2m-1\end{cases}}\)

Mà \(t\ge0\), phương trình có 4 nghiệm phân biệt => \(m\ge\frac{1}{2},m\ne1\)

Phương trình có 4 nghiệm \(S=\left\{-1,-\sqrt{2m-1},1,\sqrt{2m-1}\right\}\)

2 trường hợp

 TH1   \(-\sqrt{2m-1}< -1< 1< \sqrt{2m-1}\)(x1<x2<x3<x4)

=> \(2\sqrt{2m-1}=3.2\)=> m=5(thỏa mãn ĐK)

Hoặc \(-1< -\sqrt{2m-1}< \sqrt{2m-1}< 1\)

=> \(2=6\sqrt{2m-1}\)=> \(m=\frac{5}{9}\)(thỏa mãn ĐK)

Vậy \(m=\frac{5}{9},m=5\)

b, Đặt \(x^2=t\left(t\ge0\right)\)=> \(x_1^2=x_2^2,x_3^2=x_4^2\)

=> \(t^2-2\left(2m+1\right)t+4m^2=0\)

Phương trình có 2 nghiệm không âm 

\(\hept{\begin{cases}\Delta'\ge0\\2m+1>0\\4m^2\ge0\end{cases}}\)=> \(m\ge-\frac{1}{4}\)

Áp dụng hệ thức vi-et ta có 

\(\hept{\begin{cases}t_1+t_2=2\left(2m+1\right)\\t_1t_2=4m^2\end{cases}}\)

Theo đề bài ta có 

\(2\left(t_1^2+t_2^2\right)=17\)

=> \(2\left[4\left(2m+1\right)^2-8m^2\right]=17\)

=> \(16m^2+32m-9=0\)

=> \(\orbr{\begin{cases}m=\frac{1}{4}\\m=-\frac{9}{4}\end{cases}}\)

Kết hợp với ĐK

=> \(m=\frac{1}{4}\)

Vậy m=1/4

 

0
5 tháng 4 2015

a/ Áp dụng Bất đẳng thức Cauchy cho các số m2,n2,1 không âm ta được:

m2+1>=2m(1)

n2+1>=2n (2)

Từ (1) và (2)=> m2+n2+2>= 2m+2n vs mọi m,n (đpcm)

b/ Ta có: (a-b)2>= 0

<=> a+b2-2ab>=0

<=>a2+b2+2ab>=4ab (cộng 2 vế vs 2ab với a>0,b>0)

<=> (a+b)2>= 4ab

<=> a+b >= 4ab/(a+b) (chia 2 vế cho a+b với a>0.b>0) 

<=> (a+b)/ab>= 4/(a+b) (3)

Mà: 1/a+1/b=(a+b)/ab (4)

Từ (3) và (4)=> 1/a+1/b>=4/(a+b)

<=> (a+b)(1/a+1/b)>=4 (đpcm)

 

5 tháng 4 2015

cộng 2 vế với 4 ab , nhầm ^^

19 tháng 6 2019

đề đúng không ??? 

19 tháng 6 2019

Đề đúng mà

13 tháng 4 2017

Với x>0 để hàm số đồng biến thì 2m-1>0<=> m>1/2