Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số hạt nhân Pôlôni lúc đầu là \(N_ 0 = nN_A= \frac{m_0}{A}N_A= \frac{42.10^{-3}.6,02.10^{23}}{210}= 1,204.10^{20}\)
Độ phóng xạ ban đầu là \(H_0 = \lambda N_0 = \frac{\ln 2}{T}N_0 = \frac{\ln 2}{140.24.3600}1,204.10^{20}= 6,9.10^{12}.(Bq)\)
Chú ý: Khi tính độ phóng xạ theo đơn vị Bq thì thời gian chu kì phải chuyển sang "giây"
Số hạt nhân Natri là \(N_0 = nN_Á = \frac{m}{A}N_A\)
Độ phóng xạ ban đầu \(H_0 = \lambda N_0 = \frac{\ln 2}{T}\frac{m}{A}N_A= 6,73.10^{16}.(Bq)\)
Chú ý là trong khi tính độ phóng xạ theo đơn vị "Bq" thì chu kì phải đổi sang đơn vị "giây" .
\(_{92}^{238}U \rightarrow _2^4He + _{90}^{234}\text{Th}\)
Sau 9.109 năm thì số gam Urani bị phân rã là
\(\Delta m = m_0 - m(t) = m_0(1-2^{-t/T}) = 6,97g.\)
Số mol urani bị phân rã là \(n = \frac{\Delta m}{A_{U}} = \frac{6,97}{238} = 0,0293 \text{mol}.\)
Dựa vào phương trình ta thấy cứ 1 hạt Urani bị phân rã sẽ tạo thành 1 hạt Thori. Suy ra \(n_{Th} = n_{urani}\)
Nhưu vậy khối lượng Thori tạo thành là \(m_{Th} = 0,0293.234 = 6,854 g.\)
Số hạt còn lại: \(N=N_0.2^{-\dfrac{80}{20}}=\dfrac{N_0}{16}\)
Số hạt bị phân rã: \(N'=N_0-N=\dfrac{15}{16}N_0=93,75%\)
\(X \rightarrow _{-1}^{\ \ 0}e+Y\)
Từ phương trình phóng xạ => Cứ 1 hạt nhân \(X\) bị phóng xạ thì tạo thành 1 hạt nhân \(\beta^-\)
Số hạt nhân \(X\) bị phóng xạ là \(\Delta N = 4,2.10^{13}\) hạt. (1)
Số hạt nhân ban đầu \(X\) (trong 1 gam) là: \(N_0 = \frac{m_0}{A}.N_A= \frac{1}{58,933}.6,023.10^{23} \approx 1,022.10^{22}\)hạt. (2)
Từ (1) và (2) => \(\Delta N = N_0(1-2^{-\frac{t}{T}})\)
=> \(2 ^{-t/T}=1- \frac{\Delta N}{N_0} \)
=> \(\frac{-t}{T} = \ln_2(1- \frac{4,2.10^{13}}{1,022.10^{22}}) =- 5,93.10^{-9}\)
=> \(T \approx 1,68.10^{8}s.\) (\(t = 1s\))
Chọn đáp án.B.1,68.108s.
\(E_n = -\frac{13,6}{n^2},(eV)\)(với n = 1, 2, 3,..)
Nguyên tử hiđrô hấp thụ một phôtôn có năng lượng 2,55 eV.
Việc đầu tiên là cần phải xác định xem nguyên tử nhảy từ mức nào lên mức nào mà có hiệu năng lượng giữa hai mức đúng bằng 2,55 eV.
\(E_1 = -13,6eV\), \(E_3 = -1,51 eV\)
\(E_2 = -3,4eV\),\(E_4 = -0,85eV\)
Nhận thấy \(E_4-E_2= -0,85 +3,4= 2,55 eV.\)
Như vậy nguyên tử đã hấp thụ năng lượng và nhảy từ mức n = 2 lên mức n = 4.
Tiếp theo, nguyên tử đang ở mức n = 4 rồi thì nó có thể phát ra bước sóng nhỏ nhất ứng với từ n = 4 về n = 1 tức là \(\lambda_{41}\) thỏa mãn
\(\lambda_{41}= \frac{hc}{E_4-E_1}= \frac{6,625.10^{-34}.3.10^8}{(-0,85+13,6).1,6.10^{-19}}=9,74.10^{-8}m. \)